第一阶段学习总结:Datawhale组织的Pandas组队学习暂告一段落。快乐pandas以自主学习、助教答疑、定期打卡等形式,课程资料编写比较详细,配合思考题和练习巩固,无奈于本人较菜,对所学的知识掌握还不够透彻,完成这次综合练习断断续续花了两天时间,后面一定要抽时间复盘之前所学的内容。
全面学习基础内容有助于建立体系,了解各大功能模块,在使用时才能有所了解,找准方向。因此后面会继续参加pandas(下)的学习,争取学完这期教程。
- 数据集下载:pandas教程(上)综合题数据集
- 往期内容:
- Pandas学习总结——1. 基础操作(文件读写)、数据结构(Series、DataFrame)、常用基本函数、数据排序
- Pandas学习总结——2. 一文详述 Pandas索引
- Pandas学习总结——3. Pandas分组 都有哪些操作?
- Pandas学习总结——4. Pandas变形 之 透视表 & 变形方法
- Pandas学习总结——5. 合并 (append与assign、combine与update、concat、merge与join)
import numpy as np
import pandas as pd
import re
vehicle = pd.read_csv('数据集/2002年-2018年上海机动车拍照拍卖.csv')
vehicle.head()
Date | Total number of license issued | lowest price | avg price | Total number of applicants | |
---|---|---|---|---|---|
0 | 2-Jan | 1400 | 13600 | 14735 | 3718 |
1 | 2-Feb | 1800 | 13100 | 14057 | 4590 |
2 | 2-Mar | 2000 | 14300 | 14662 | 5190 |
3 | 2-Apr | 2300 | 16000 | 16334 | 4806 |
4 | 2-May | 2350 | 17800 | 18357 | 4665 |
问:哪一次拍卖的中标率首次小于 5%?
vehicle_1 = vehicle.assign(probability=vehicle['Total number of license issued'] / vehicle['Total number of applicants'])
vehicle_1[vehicle_1['probability']<0.05].head(1)
Date | Total number of license issued | lowest price | avg price | Total number of applicants | probability | |
---|---|---|---|---|---|---|
159 | 15-May | 7482 | 79000 | 79099 | 156007 | 0.047959 |
问:按年统计拍卖最低价的下列统计量:最大值、均值、0.75 分位数,要求显示在同一张表上。
vehicle_2 = vehicle.assign(year=vehicle['Date'].apply(lambda x: x.split('-')[0]))
vehicle_2.head()
groupby_ = vehicle_2.groupby('year')
new_dataframe = pd.DataFrame()
new_dataframe[‘max’] = groupby_[‘lowest price’].max()
new_dataframe[‘mean’] = groupby_[‘lowest price’].mean()
new_dataframe[‘quantile’] = groupby_[‘lowest price’].quantile(0.75)
new_dataframe
max | mean | quantile | |
---|---|---|---|
year | |||
10 | 44900 | 38008.333333 | 41825.0 |
11 | 53800 | 47958.333333 | 51000.0 |
12 | 68900 | 61108.333333 | 65325.0 |
13 | 90800 | 79125.000000 | 82550.0 |
14 | 74600 | 73816.666667 | 74000.0 |
15 | 85300 | 80575.000000 | 83450.0 |
16 | 88600 | 85733.333333 | 87475.0 |
17 | 93500 | 90616.666667 | 92350.0 |
18 | 89000 | 87825.000000 | 88150.0 |
2 | 30800 | 20316.666667 | 24300.0 |
3 | 38500 | 31983.333333 | 36300.0 |
4 | 44200 | 29408.333333 | 38400.0 |
5 | 37900 | 31908.333333 | 35600.0 |
6 | 39900 | 37058.333333 | 39525.0 |
7 | 53800 | 45691.666667 | 48950.0 |
8 | 37300 | 29945.454545 | 34150.0 |
9 | 36900 | 31333.333333 | 34150.0 |
问:将第一列时间列拆分成两个列,一列为年份(格式为 20××) ,另一列为月份(英语缩写) ,添加到列表作为第一第二列,并将原表第一列删除,其他列依次向后顺延。
Year = vehicle['Date'].apply(lambda x: str(20) + ("%02d" % int(x.split('-')[0])))
Month = vehicle['Date'].apply(lambda x: x.split('-')[1])
vehicle_3 = vehicle.drop(columns=‘Date’)
vehicle_3.insert(0, ‘Year’, Year)
vehicle_3.insert(1, ‘Month’, Month)
vehicle_3.head()
Year | Month | Total number of license issued | lowest price | avg price | Total number of applicants | |
---|---|---|---|---|---|---|
0 | 2002 | Jan | 1400 | 13600 | 14735 | 3718 |
1 | 2002 | Feb | 1800 | 13100 | 14057 | 4590 |
2 | 2002 | Mar | 2000 | 14300 | 14662 | 5190 |
3 | 2002 | Apr | 2300 | 16000 | 16334 | 4806 |
4 | 2002 | May | 2350 | 17800 | 18357 | 4665 |
问:现在将表格行索引设为多级索引,外层为年份,内层为原表格第二至第五列的变量名,列索引为月份。
vehicle_4 = vehicle_3.set_index(['Year', 'Total number of license issued', 'lowest price', 'avg price', 'Total number of applicants'])
vehicle_4.head()
Month | |||||
---|---|---|---|---|---|
Year | Total number of license issued | lowest price | avg price | Total number of applicants | |
2002 | 1400 | 13600 | 14735 | 3718 | Jan |
1800 | 13100 | 14057 | 4590 | Feb | |
2000 | 14300 | 14662 | 5190 | Mar | |
2300 | 16000 | 16334 | 4806 | Apr | |
2350 | 17800 | 18357 | 4665 | May |
问:一般而言某个月最低价与上月最低价的差额,会与该月均值与上月均值的差额具有相同的正负号,哪些拍卖时间不具有这个特点?
vehicle_5 = vehicle[['Date','lowest price','avg price']]
for index in range(1, len(vehicle_5)):
if ((vehicle_5.iloc[index][‘lowest price’] - vehicle_5.iloc[index-1][‘lowest price’])
* (vehicle_5.iloc[index][‘avg price’] - vehicle_5.iloc[index-1][‘avg price’])) < 0:
print(vehicle_5.iloc[index][‘Date’])
3-Oct
3-Nov
4-Jun
5-Jan
5-Feb
5-Sep
6-May
6-Sep
7-Jan
7-Feb
7-Dec
12-Oct
问:将某一个月牌照发行量与其前两个月发行量均值的差额定义为发行增益,最初的两个月用 0 填充,求发行增益极值出现的时间。
vehicle_6 = vehicle[['Date','Total number of license issued']]
gain = [0,0]
string = 'Total number of license issued'
for index in range(2, len(vehicle_6)):
gain.append(vehicle.iloc[index][string] - np.mean([vehicle.iloc[index-1][string], vehicle.iloc[index-2][string]]))
vehicle_6['gain'] = gain
print(‘增益极大值出现时间:’, vehicle_6[vehicle_6[‘gain’] vehicle_6[‘gain’].max()][‘Date’].values)
print(‘增益极小值出现时间:’, vehicle_6[vehicle_6[‘gain’] vehicle_6[‘gain’].min()][‘Date’].values)
增益极大值出现时间: ['8-Jan']
增益极小值出现时间: ['8-Apr']
Q2 = pd.read_csv('数据集/2007年-2019年俄罗斯货运航班运载量.csv')
Q2.head()
Airport name | Year | January | February | March | April | May | June | July | August | September | October | November | December | Whole year | Airport coordinates | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Abakan | 2019 | 44.70 | 66.21 | 72.7 | 75.82 | 100.34 | 78.38 | 63.88 | 73.06 | 66.74 | 75.44 | 110.5 | 89.8 | 917.57 | (Decimal('91.399735'), Decimal('53.751351')) |
1 | Aikhal | 2019 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | (Decimal('111.543324'), Decimal('65.957161')) |
2 | Loss | 2019 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | (Decimal('125.398355'), Decimal('58.602489')) |
3 | Amderma | 2019 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | (Decimal('61.577429'), Decimal('69.759076')) |
4 | Anadyr (Carbon) | 2019 | 81.63 | 143.01 | 260.9 | 304.36 | 122.00 | 106.87 | 84.99 | 130.00 | 102.00 | 118.00 | 94.0 | 199.0 | 1746.76 | (Decimal('177.738273'), Decimal('64.713433')) |
问:求每年货运航班总运量
groupby2 = Q2.groupby('Year')
print('各年货运总量航班:')
groupby2['Whole year'].sum()
各年货运总量航班:
Year
2007 659438.23
2008 664682.46
2009 560809.77
2010 693033.98
2011 818691.71
2012 846388.03
2013 792337.08
2014 729457.12
2015 630208.97
2016 679370.15
2017 773662.28
2018 767095.28
2019 764606.27
Name: Whole year, dtype: float64
问:每年记录的机场都是相同的吗?
print('各年统计的机场数量:')
display(groupby2['Airport name'].count())
Q2_2 = Q2.groupby(‘Airport name’)[‘Year’]
print(‘各机场被统计的总数:’)
display(Q2_2.count())
print( ‘有 %d个机场并不是每年都被统计。’ % len(Q2_2.count()[(Q2_2.count())<(2019-2007+1)]))
各年统计的机场数量:
Year
2007 292
2008 292
2009 292
2010 292
2011 292
2012 292
2013 292
2014 292
2015 292
2016 292
2017 292
2018 248
2019 251
Name: Airport name, dtype: int64
各机场被统计的总数:
Airport name
Abakan 13
Achinsk 11
Aikhal 13
Amderma 13
Anadyr 12
…
Лешуконское 13
Мотыгино 13
Нюрба 13
Среднеколымск 13
Таксимо 13
Name: Year, Length: 297, dtype: int64
有 63个机场并不是每年都被统计。
问:按年计算 2010 年-2015 年全年货运量记录为 0 的机场航班比例。
Q2_3 = Q2.set_index(['Year'])
groupby_3 = Q2_3.sort_index().loc[2010:2015].groupby('Year')
display(groupby_3['Whole year'].agg( lambda x: print( '年份:', x.index[0], '\t 比例:%.2f' % (len(x[x==0]) / len(x) * 100), '%' ) ))
年份: 2010 比例:76.71 %
年份: 2011 比例:77.05 %
年份: 2012 比例:77.05 %
年份: 2013 比例:77.05 %
年份: 2014 比例:77.05 %
年份: 2015 比例:77.05 %
Year
2010 None
2011 None
2012 None
2013 None
2014 None
2015 None
Name: Whole year, dtype: object
问:若某机场至少存在 5 年或以上满足所有月运量记录都为 0,则将其所有年份的记录信息从表中删除,并返回处理后的表格
Q2_4 = Q2.set_index('Airport name')
groupby_4 = Q2_4.groupby('Airport name')
zero_airport = pd.DataFrame(groupby_4['Whole year'].apply( lambda x: len(x[x==0])>5 ))
Q2_4.drop(zero_airport[zero_airport['Whole year']==True].index).head()
Year | January | February | March | April | May | June | July | August | September | October | November | December | Whole year | Airport coordinates | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Airport name | |||||||||||||||
Abakan | 2019 | 44.70 | 66.21 | 72.70 | 75.82 | 100.34 | 78.38 | 63.88 | 73.06 | 66.74 | 75.44 | 110.50 | 89.80 | 917.57 | (Decimal('91.399735'), Decimal('53.751351')) |
Anadyr (Carbon) | 2019 | 81.63 | 143.01 | 260.90 | 304.36 | 122.00 | 106.87 | 84.99 | 130.00 | 102.00 | 118.00 | 94.00 | 199.00 | 1746.76 | (Decimal('177.738273'), Decimal('64.713433')) |
Anapa (Vitjazevo) | 2019 | 45.92 | 53.15 | 54.00 | 54.72 | 52.00 | 67.45 | 172.31 | 72.57 | 70.00 | 63.00 | 69.00 | 82.10 | 856.22 | (Decimal('37.341511'), Decimal('45.003748')) |
Arkhangelsk (Talagy) | 2019 | 85.61 | 118.70 | 131.39 | 144.82 | 137.95 | 140.18 | 128.56 | 135.68 | 124.75 | 139.60 | 210.27 | 307.10 | 1804.61 | (Decimal('40.714892'), Decimal('64.596138')) |
Astrakhan (Narimanovo) | 2019 | 51.75 | 61.08 | 65.60 | 71.84 | 71.38 | 63.95 | 164.86 | 79.46 | 85.21 | 87.23 | 79.06 | 99.16 | 980.58 | (Decimal('47.999896'), Decimal('46.287344')) |
问:采用一种合理的方式将所有机场划分为东南西北四个分区, 并给出 2017 年 - 2019 年货运总量最大的区域。
Q2 = pd.read_csv('数据集/2007年-2019年俄罗斯货运航班运载量.csv')
Q2_5 = Q2.set_index(['Year']).sort_index().loc[2017:2019].loc[:, ['Whole year','Airport coordinates']]
# 坐标 提取
longitude = []
latitude = []
for i in range(0, len(Q2_5[‘Airport coordinates’])):
string = re.findall(r"\d+.?\d*", str(Q2_5[‘Airport coordinates’].iloc[i]))
if string==[]:
longitude.append(np.nan)
latitude.append(np.nan)
else:
longitude.append(float(string[0]))
latitude.append( float(string[1]))
Q2_5[‘Longitude’] = longitude
Q2_5[‘Latitude’] = latitude
Q2_5 = Q2_5.dropna() # 删掉 Not found 的机场
cuts_long = pd.cut(Q2_5['Longitude'],bins=[0, Q2_5['Longitude'].median(), 180])
Q2_5['cuts_long'] = cuts_long
cuts_la = pd.cut(Q2_5['Latitude'],bins=[0, Q2_5['Latitude'].median(), 90])
Q2_5['cuts_la'] = cuts_la
display(Q2_5.groupby(['cuts_long', 'cuts_la']).count())
groupby_5 = Q2_5.groupby(['cuts_long', 'cuts_la'])
print( '2017 年 - 2019 年货运总量最大区域的 经度范围:%s,维度范围:%s' \
% (groupby_5['Whole year'].sum().idxmax()[0], groupby_5['Whole year'].sum().idxmax()[1]) )
Whole year | Airport coordinates | Longitude | Latitude | ||
---|---|---|---|---|---|
cuts_long | cuts_la | ||||
(0.0, 82.049] | (0.0, 58.498] | 187 | 187 | 187 | 187 |
(58.498, 90.0] | 196 | 196 | 196 | 196 | |
(82.049, 180.0] | (0.0, 58.498] | 195 | 195 | 195 | 195 |
(58.498, 90.0] | 185 | 185 | 185 | 185 |
2017 年 - 2019 年货运总量最大区域的 经度范围:(0.0, 82.049],维度范围:(0.0, 58.498]
问:在统计学中常常用秩代表排名,现在规定某个机场某年某个月的秩为该机场该月在当年所有月份中货运量的排名(例如:xx 机场 19 年 1 月运量在整个 19 年 12 个月中排名第一,则秩为 1) ,那么判断某月运量情况的相对大小的秩方法为将所有机场在该月的秩排名相加,并将这个量定义为每一个月的秩综合指数,请根据上述定义计算 2016 年 12 个月的秩综合指数。
Q2_6 = Q2[Q2['Year']==2016]
month = Q2_6.columns[2:14]
Rank = pd.DataFrame(index=Q2_6.index, columns=month)
for index in Q2_6.index:
aa = Q2_6.loc[index,month].sort_values(ascending=False)
rank = 1
for mon in aa.index:
Rank.loc[index, mon] = rank
rank = rank + 1
print(Rank.apply(lambda x: x.sum()))
January 3406
February 3076
March 2730
April 2432
May 2276
June 2047
July 1854
August 1527
September 1269
October 1009
November 728
December 422
dtype: int64
Q3_confirmed = pd.read_csv('数据集/美国确证数.csv')
Q3_death = pd.read_csv('数据集/美国死亡数.csv')
display(Q3_confirmed.head())
display(Q3_death.head())
UID | iso2 | iso3 | code3 | FIPS | Admin2 | Province_State | Country_Region | Lat | Long_ | ... | 2020/4/17 | 2020/4/18 | 2020/4/19 | 2020/4/20 | 2020/4/21 | 2020/4/22 | 2020/4/23 | 2020/4/24 | 2020/4/25 | 2020/4/26 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 84001001 | US | USA | 840 | 1001 | Autauga | Alabama | US | 32.539527 | -86.644082 | ... | 26 | 25 | 26 | 28 | 30 | 32 | 33 | 36 | 36 | 37 |
1 | 84001003 | US | USA | 840 | 1003 | Baldwin | Alabama | US | 30.727750 | -87.722071 | ... | 103 | 109 | 112 | 117 | 123 | 132 | 143 | 147 | 147 | 161 |
2 | 84001005 | US | USA | 840 | 1005 | Barbour | Alabama | US | 31.868263 | -85.387129 | ... | 15 | 18 | 20 | 22 | 28 | 29 | 30 | 32 | 32 | 33 |
3 | 84001007 | US | USA | 840 | 1007 | Bibb | Alabama | US | 32.996421 | -87.125115 | ... | 24 | 26 | 28 | 32 | 32 | 34 | 33 | 34 | 34 | 38 |
4 | 84001009 | US | USA | 840 | 1009 | Blount | Alabama | US | 33.982109 | -86.567906 | ... | 20 | 20 | 21 | 22 | 26 | 29 | 31 | 31 | 31 | 34 |
5 rows × 107 columns
UID | iso2 | iso3 | code3 | FIPS | Admin2 | Province_State | Country_Region | Lat | Long_ | ... | 2020/4/17 | 2020/4/18 | 2020/4/19 | 2020/4/20 | 2020/4/21 | 2020/4/22 | 2020/4/23 | 2020/4/24 | 2020/4/25 | 2020/4/26 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 84001001 | US | USA | 840 | 1001 | Autauga | Alabama | US | 32.539527 | -86.644082 | ... | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
1 | 84001003 | US | USA | 840 | 1003 | Baldwin | Alabama | US | 30.727750 | -87.722071 | ... | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
2 | 84001005 | US | USA | 840 | 1005 | Barbour | Alabama | US | 31.868263 | -85.387129 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 84001007 | US | USA | 840 | 1007 | Bibb | Alabama | US | 32.996421 | -87.125115 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 84001009 | US | USA | 840 | 1009 | Blount | Alabama | US | 33.982109 | -86.567906 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 rows × 108 columns
问:用 corr() 函数计算县(每行都是一个县)人口与表中最后一天记录日期死亡数的相关系数。
Q3_death[['Population', '2020/4/26']].corr()
Population | 2020/4/26 | |
---|---|---|
Population | 1.000000 | 0.403844 |
2020/4/26 | 0.403844 | 1.000000 |
问:截止到 4 月 1 日,统计每个州零感染县的比例。
# 时序数据,是累计的,因此只取2020/4/1日
Q3_2 = Q3_confirmed[['Admin2', 'Province_State', '2020/4/1']]
groupby_Q3_2 = Q3_2.groupby('Province_State')
# display(groupby_Q3_2.first())
groupby_Q3_2[‘2020/4/1’].apply(lambda x: len(x[x==0]) / len(x) )
Province_State
Alabama 0.119403
Alaska 0.793103
Arizona 0.000000
Arkansas 0.293333
California 0.137931
Colorado 0.218750
Connecticut 0.000000
Delaware 0.000000
District of Columbia 0.000000
Florida 0.164179
Georgia 0.125786
Hawaii 0.200000
Idaho 0.386364
Illinois 0.480392
Indiana 0.108696
Iowa 0.404040
Kansas 0.609524
Kentucky 0.441667
Louisiana 0.062500
Maine 0.250000
Maryland 0.041667
Massachusetts 0.142857
Michigan 0.192771
Minnesota 0.367816
Mississippi 0.060976
Missouri 0.391304
Montana 0.625000
Nebraska 0.752688
Nevada 0.470588
New Hampshire 0.100000
New Jersey 0.000000
New Mexico 0.424242
New York 0.080645
North Carolina 0.180000
North Dakota 0.547170
Ohio 0.181818
Oklahoma 0.376623
Oregon 0.277778
Pennsylvania 0.104478
Rhode Island 0.000000
South Carolina 0.065217
South Dakota 0.560606
Tennessee 0.115789
Texas 0.452756
Utah 0.482759
Vermont 0.142857
Virginia 0.270677
Washington 0.128205
West Virginia 0.472727
Wisconsin 0.319444
Wyoming 0.347826
Name: 2020/4/1, dtype: float64
问:请找出最早出确证病例的三个县。
Q3_3 = Q3_confirmed.set_index('Admin2')
# Q3_3.head()
Date = Q3_3.columns[10:]
top3_adamin = { }
for date in Date:
aa = Q3_3.loc[:, date]
first_index = aa[aa>0].index
for first in first_index:
if first not in top3_adamin:
top3_adamin[first] = date
else:
continue
if len(top3_adamin)>3:
break
for key, value in top3_adamin.items():
print(’{value} : {key} 开始出现病例’.format(value = value,key = key))
# pd.DataFrame([top3_adamin])
2020/1/22 : King 开始出现病例
2020/1/24 : Cook 开始出现病例
2020/1/26 : Maricopa 开始出现病例
2020/1/26 : Los Angeles 开始出现病例
2020/1/26 : Orange 开始出现病例
问:按州统计单日死亡增加数,并给出哪个州在哪一天确诊数增加最大(这里指的是在所有州和所有天两个指标一起算,不是分别算)。
Q3_4_confirmed = Q3_confirmed.set_index('Province_State').iloc[:, 10:].groupby('Province_State').sum()
Q3_4_death = Q3_death.set_index('Province_State').iloc[:, 11:].groupby('Province_State').sum()
Date = Q3_4_death.columns[0:]
death_gain = []
confirmed_gain = []
for date in range(len(Date)-1):
death_gain.append(Q3_4_death.iloc[:, date+1] - Q3_4_death.iloc[:, date])
confirmed_gain.append(Q3_4_confirmed.iloc[:, date+1] - Q3_4_confirmed.iloc[:, date])
death_gain = pd.DataFrame(np.array(death_gain).T, index=Q3_4_death.index, columns=Q3_4_death.columns[1:])
confirmed_gain = pd.DataFrame(np.array(confirmed_gain).T, index=Q3_4_confirmed.index, columns=Q3_4_death.columns[1:])
print(‘死亡增加数统计结果:’)
display(death_gain)
print(‘各州确诊数增加最大情况:’)
confirmed_gain.idxmax(axis=1)
死亡增加数统计结果:
2020/1/23 | 2020/1/24 | 2020/1/25 | 2020/1/26 | 2020/1/27 | 2020/1/28 | 2020/1/29 | 2020/1/30 | 2020/1/31 | 2020/2/1 | ... | 2020/4/17 | 2020/4/18 | 2020/4/19 | 2020/4/20 | 2020/4/21 | 2020/4/22 | 2020/4/23 | 2020/4/24 | 2020/4/25 | 2020/4/26 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Province_State | |||||||||||||||||||||
Alabama | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 15 | 5 | 4 | 6 | 20 | 13 | 6 | 7 | 0 | 10 |
Alaska | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Arizona | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 5 | 39 | 3 | 7 | 18 | 23 | 18 | 17 | 7 | 2 |
Arkansas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 1 | 1 | 2 | 1 | 0 | 3 | 2 | 1 | 3 |
California | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 81 | 103 | 35 | 48 | 57 | 139 | 112 | 88 | 68 | 36 |
Colorado | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 17 | 17 | 31 | 0 | 63 | 23 | 44 | 121 | 10 | 4 |
Connecticut | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 65 | 49 | 40 | 204 | 92 | 121 | 93 | 128 | 98 | 65 |
Delaware | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 9 | 6 | 0 | 5 | 10 | 7 | 3 | 8 | 12 | 8 |
District of Columbia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 5 | 5 | 5 | 9 | 7 | 15 | 12 | 14 | 12 | 13 |
Florida | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 57 | 23 | 26 | 48 | 45 | 26 | 94 | 59 | 9 | 20 |
Georgia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 56 | 23 | 14 | 86 | 25 | 48 | 32 | 18 | 7 | 11 |
Hawaii | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 1 |
Idaho | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 2 | 1 | 1 | 3 | 3 | 3 | 0 | 2 | 0 |
Illinois | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 60 | 125 | 31 | 59 | 120 | 98 | 124 | 106 | 80 | 59 |
Indiana | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 46 | 23 | 17 | 15 | 58 | 31 | 40 | 35 | 45 | 27 |
Iowa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 4 | 10 | 1 | 4 | 4 | 7 | 6 | 11 | 5 | 6 |
Kansas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 2 | 3 | 8 | 9 | 7 | 3 | 1 | 5 | 2 | 1 |
Kentucky | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 7 | 2 | 2 | 14 | 17 | 14 | 6 | 9 | 5 | 3 |
Louisiana | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 57 | 54 | 29 | 32 | 76 | 69 | 68 | 61 | 43 | 26 |
Maine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 2 | 3 | 2 | 1 | 1 | 3 | 5 | 3 | 0 | 3 |
Maryland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 15 | 87 | 40 | 29 | 42 | 58 | 52 | 45 | 64 | 14 |
Massachusetts | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 135 | 156 | 301 | 0 | 267 | 0 | 0 | 0 | 764 | 41 |
Michigan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 229 | 80 | 82 | 75 | 106 | 238 | 162 | 106 | 67 | 158 |
Minnesota | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 24 | 10 | 13 | 9 | 17 | 19 | 21 | 21 | 23 | 28 |
Mississippi | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 11 | 12 | 7 | 10 | 14 | 10 | 8 | 8 | 12 | 6 |
Missouri | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 14 | 13 | 2 | 1 | 24 | 14 | 13 | 19 | 9 | 2 |
Montana | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 |
Nebraska | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 3 | 0 | 0 | 0 | 20 | 0 | 0 | 0 |
Nevada | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 10 | 10 | 7 | 1 | 4 | 9 | 18 | 5 | 10 | 0 |
New Hampshire | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
New Jersey | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 322 | 231 | 294 | 134 | 24 | 630 | 276 | 257 | 231 | 24 |
New Mexico | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 8 | 9 | 2 | 3 | 0 | 13 | 7 | 6 | 9 | 6 |
New York | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 452 | 520 | 480 | 947 | 615 | 460 | 540 | 212 | 1054 | 260 |
North Carolina | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 27 | 10 | 13 | 18 | 27 | 20 | 16 | 13 | 11 | 19 |
North Dakota | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 0 | 1 | 1 |
Ohio | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 27 | 33 | 20 | 38 | 48 | 53 | 46 | 34 | 21 | 17 |
Oklahoma | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 9 | 3 | 21 | 6 | 9 | 9 | 6 | 1 |
Oregon | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 6 | 2 | 2 | 1 | 3 | 0 | 5 | 3 | 1 | 5 |
Pennsylvania | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 80 | 121 | 234 | 72 | 266 | 59 | 51 | 23 | 46 | 23 |
Rhode Island | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 |
South Carolina | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 5 | 3 | 1 | 3 | 1 | 16 | 10 | 7 | 9 | 8 |
South Dakota | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
Tennessee | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 5 | 1 | 6 | 4 | 5 | 0 | 14 | -2 | 8 | 3 |
Texas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 37 | 25 | 14 | 17 | 26 | 23 | 48 | 20 | 14 | 13 |
Utah | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 10 | 2 | 0 | 0 | 3 | 0 | 3 | 4 | 1 | 0 |
Vermont | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 2 | 2 | 0 | 1 | 2 | 0 | 3 | 1 | 2 | 0 |
Virginia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 33 | 0 | 0 | 20 | 0 | 165 | 24 | 38 | 26 | 12 |
Washington | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 24 | 10 | 23 | 7 | 21 | 22 | 25 | 11 | 15 | 12 |
West Virginia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 0 | 0 | 24 | 1 | 0 | 2 |
Wisconsin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 9 | 6 | 8 | 10 | 14 | 4 | 10 | 5 | 3 | 6 |
Wyoming | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
51 rows × 95 columns
各州确诊数增加最大情况:
Province_State
Alabama 2020/4/26
Alaska 2020/3/28
Arizona 2020/4/23
Arkansas 2020/4/23
California 2020/4/20
Colorado 2020/4/24
Connecticut 2020/4/22
Delaware 2020/4/26
District of Columbia 2020/4/8
Florida 2020/4/2
Georgia 2020/4/14
Hawaii 2020/4/3
Idaho 2020/4/2
Illinois 2020/4/24
Indiana 2020/4/25
Iowa 2020/4/25
Kansas 2020/4/23
Kentucky 2020/4/12
Louisiana 2020/4/2
Maine 2020/4/2
Maryland 2020/4/8
Massachusetts 2020/4/24
Michigan 2020/4/3
Minnesota 2020/4/17
Mississippi 2020/4/19
Missouri 2020/4/10
Montana 2020/4/2
Nebraska 2020/4/23
Nevada 2020/3/30
New Hampshire 2020/4/15
New Jersey 2020/4/22
New Mexico 2020/4/22
New York 2020/4/15
North Carolina 2020/4/25
North Dakota 2020/4/18
Ohio 2020/4/19
Oklahoma 2020/4/19
Oregon 2020/4/5
Pennsylvania 2020/4/23
Rhode Island 2020/4/15
South Carolina 2020/4/9
South Dakota 2020/4/15
Tennessee 2020/4/23
Texas 2020/4/9
Utah 2020/4/10
Vermont 2020/4/11
Virginia 2020/4/25
Washington 2020/4/2
West Virginia 2020/4/19
Wisconsin 2020/4/25
Wyoming 2020/4/21
dtype: object
问:**现需对每个州编制确证与死亡表,第一列为时间,并且起始时间为该州开始出现死亡比例的那一天,第二列和第三列分别为确证数和死亡数,每个州需要保存为一个单独的 csv 文件,文件名为“州名.csv” **
Q3_5_confirmed = Q3_confirmed.set_index('Province_State').iloc[:, 10:].groupby('Province_State').sum().T
Q3_5_death = Q3_death.set_index('Province_State').iloc[:, 11:].groupby('Province_State').sum().T
zhou = Q3_5_confirmed.columns[:]
for name in list(zhou):
confirmed = Q3_5_confirmed.loc[:, name]
death = Q3_5_death.loc[:, name]
for date in Q3_5_confirmed.index:
if death.loc[date] > 0:
start_day = date
break
save_data = pd.DataFrame( { ‘confirmed num’:confirmed.loc[start_day:], ‘death num’:death.loc[start_day:]} )
save_data.to_csv(name + ‘.csv’)
问:**现需对 4 月 1 日至 4 月 10 日编制新增确证数与新增死亡数表,第一列为州名,第二列和第三列分别为新增确证数和新增死亡数,分别保存为十个单独的 csv 文件,文件名为“日期.csv” **
Q3_6_death_gain = death_gain.loc[:, '2020/4/1':'2020/4/10']
Q3_6_confirm_gain = confirmed_gain.loc[:, '2020/4/1':'2020/4/10']
# display(Q3_6_death_gain)
# display(Q3_6_confirm_gain)
Date = Q3_6_death_gain.columns[0:]
# pd.DataFrame({‘add_confirm_num’:Q3_6_confirm_gain.loc[:, date], ‘add_death_num’:Q3_6_death_gain.loc[:, date]})
for date in list(Date):
save_data = pd.DataFrame({ ‘add_confirm_num’:Q3_6_confirm_gain.loc[:, date], ‘add_death_num’:Q3_6_death_gain.loc[:, date]})
save_data.to_csv(date.replace(’/’, ‘-’) + ‘.csv’)