Pandas基础(七):文本数据的类型、拆分、拼接、替换、匹配、提取等方法
DataWhale第十四期组队学习:[Joyful-Pandas](
用Seires创建
pd.Series(["a", "b", "c", "a"], dtype="category")
'''
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]
'''
对DataFrame指定类型创建
temp_df = pd.DataFrame({
'A':pd.Series(["a", "b", "c", "a"], dtype="category"),'B':list('abcd')})
temp_df.dtypes
'''
A category
B object
dtype: object
'''
利用内置Categorical类型创建
cat = pd.Categorical(["a", "b", "c", "a"], categories=['a','b','c'])
pd.Series(cat)
'''
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]
'''
利用cut函数创建
cut函数创建的分类默认为有序分类变量
pd.cut(np.random.randint(0,60,5), [0,10,30,60])
'''
[(10, 30], (30, 60], (10, 30], (30, 60], (30, 60]]
Categories (3, interval[int64]): [(0, 10] < (10, 30] < (30, 60]]
'''
pd.cut(np.random.randint(0,60,5), [0,10,30,60],
right=False, labels=['0-10','10-30','30-60'])
'''
[30-60, 30-60, 30-60, 0-10, 0-10]
Categories (3, object): [0-10 < 10-30 < 30-60]
'''
一个分类变量包括三个部分:元素值(values)、分类类别(categories)、是否有序(order)
下面介绍如何修改或获取这些属性
describe方法()
描述一个分类序列的情况,包括
s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.describe()
'''
count 4
unique 3
top a
freq 2
dtype: object
'''
categories和ordered属性
# 查看分类类别
s.cat.categories
'''
Index(['a', 'b', 'c', 'd'], dtype='object')
'''
# 是否排序
s.cat.ordered # False
# 修改分类,但本身值不会变化
s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.set_categories(['new_a','c'])
'''
0 NaN
1 NaN
2 c
3 NaN
4 NaN
dtype: category
Categories (2, object): [new_a, c]
'''
# 也可以通过参数设置顺序
pd.Series(["a", "d", "c", "a"]).astype('category').cat.set_categories(['a','c','d'],ordered=True)
# 修改分类,会把值和分类同时进行修改
s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.rename_categories(['new_%s'%i for i in s.cat.categories])
'''
0 new_a
1 new_b
2 new_c
3 new_a
4 NaN
dtype: category
Categories (4, object): [new_a, new_b, new_c, new_d]
'''
# 也可以使用字典来实现
s.cat.rename_categories({
'a':'new_a','b':'new_b'})
# 添加新的类
s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.add_categories(['e'])
# 移除指定类
s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.remove_categories(['d'])
# 删除元素值未出现的分类类型
s = pd.Series(pd.Categorical(["a", "b", "c", "a",np.nan], categories=['a','b','c','d']))
s.cat.remove_unused_categories()
# 将序列转为有序变量,可以利用as_ordered方法
s = pd.Series(["a", "d", "c", "a"]).astype('category').cat.as_ordered()
'''
0 a
1 d
2 c
3 a
dtype: category
Categories (3, object): [a < c < d]
'''
# 退化为无序变量,只需要使用as_unordered
s.cat.as_unordered()
'''
0 a
1 d
2 c
3 a
dtype: category
Categories (3, object): [a, c, d]
'''
# 重设序与序的方向,但新设置的分类必须与原分类为同一集合
s = pd.Series(["a", "d", "c", "a"]).astype('category')
s.cat.reorder_categories(['a','c','d'],ordered=True)
s = pd.Series(np.random.choice(['perfect','good','fair','bad','awful'],
50)).astype('category')
s.cat.set_categories(['perfect','good','fair',
'bad','awful'][::-1],ordered=True).head()
# 值排序和索引排序都是适用的
s.sort_values(ascending=False).head()
df_sort = pd.DataFrame({
'cat':s.values,
'value':np.random.randn(50)}).set_index('cat')
df_sort.head()
df_sort.sort_index().head()
s = pd.Series(["a", "d", "c", "a"]).astype('category')
'''
0 True
1 False
2 False
3 True
dtype: bool
'''
s == list('abcd')
等式判别
s = pd.Series(["a", "d", "c", "a"]).astype('category')
s == s
s != s
s_new = s.cat.set_categories(['a','d','e'])
#s == s_new #报错
不等式判别
两个分类变量的不等式判别需要满足两个条件:① 分类完全相同 ② 排序完全相同
s = pd.Series(["a", "d", "c", "a"]).astype('category')
#s >= s #报错
s = pd.Series(["a", "d", "c", "a"]).astype('category').cat.reorder_categories(['a','c','d'],ordered=True)
s >= s