- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- Python爬虫实战:研究TextBlob相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmlTextBlob
1.引言1.1研究背景与意义随着互联网技术的飞速发展,社交媒体已成为人们获取信息和表达观点的重要平台。每天在社交媒体上产生的海量文本数据蕴含着丰富的情感信息和社会舆情,分析这些文本情感倾向,有助于企业了解消费者对产品和服务的评价,政府部门监测社会舆论动态,研究机构探索公众对热点事件的态度。情感分析(SentimentAnalysis)作为自然语言处理的重要分支,旨在通过计算方法识别和提取文本中的主
- 对话云蝠智能:大模型如何让企业呼叫系统从 “成本中心” 变身 “价值枢纽”?
MARS_AI_
人工智能自然语言处理信息与通信交互
在人工智能重塑企业服务的浪潮中,云蝠智能(南京星蝠科技有限公司旗下品牌)以深厚的技术积累和行业实践,逐步成长为国内智能外呼领域的标杆企业。其发展路径揭示了技术自主创新与场景深度结合的必然性。一、技术架构:全栈自研奠定领先基础云蝠智能的核心竞争力源于其全链路自研技术体系。该架构覆盖语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)及软交换六大层级,实现从基础设施到操作层的闭环设计。这一分
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- 合规视角下银行智能客服风险防控
AI 智能服务
智能客服人工智能AIGC数据库chatgpt
1.AI驱动金融变革的政策与技术背景政策导向:我国《新一代人工智能发展规划》明确提出发展智能金融,要求:构建金融大数据平台,提升多媒体数据处理能力;创新智能金融产品与服务形态;推广智能客服、监控等技术应用;建立智能风控预警体系。技术支撑:云计算、大数据技术成熟为AI发展奠定了基础。深度学习算法的突破则引爆了本轮AI浪潮,显著提升了复杂任务处理精度,进而推动了计算机视觉、机器学习、自然语言处理(NL
- GRU与Transformer结合:新一代序列模型
AI大模型应用工坊
grutransformer深度学习ai
GRU与Transformer结合:新一代序列模型关键词:GRU、Transformer、序列模型、结合、深度学习摘要:本文深入探讨了GRU与Transformer结合所形成的新一代序列模型。先介绍了GRU和Transformer各自的核心概念及工作原理,然后阐述了二者结合的原因、方式和优势。通过代码实际案例展示了如何搭建结合的模型,还探讨了其在自然语言处理、语音识别等领域的实际应用场景。最后对未
- 《AI办公类工具PPT系列之七——智谱清言》
再见孙悟空_
【2025AI工具合集】人工智能iSlideAIAI智能PPTpowerpointAIPPTPPT
一.简介官网地址为chatglm.cn智谱清言(也被称为ChatGLM)是一款基于大模型技术的人工智能产品,旨在通过其强大的自然语言处理能力,为用户提供高效、智能的交互体验。该产品不仅具备广泛的应用场景,还能够在多个领域内实现深度学习和自我优化。二.功能介绍内容创作:创意写作:帮助用户进行故事、诗歌等文学作品的创作。媒体写作:辅助撰写新闻稿、社交媒体帖子等内容。写作辅助:提供写作建议、结构安排和编
- PDF 问答工具对比 - 询问有关 PDF 的任何问题
ComPDFKit
pdfPDFAIPDF问答
很好,我研究了面向普通用户、以英语支持为重点的顶级PDF问答AI工具。我将通过准确性、速度、价格、隐私和第三方集成等标准,对基于Web和可下载工具进行比较。最终的文章将包含一个对比表以便更清晰地呈现。顶级PDF问答AI工具借助AI技术的PDF问答工具让您可以上传PDF文件并通过对话方式提问其内容。这些工具无需手动阅读,而是会对文档进行索引,并使用自然语言处理模型从文本中提取答案、摘要或翻译。它们可
- Java对接Dify API接口完整指南
小侠C
deepseekAIDifyJava
Java对接DifyAPI接口完整指南一、DifyAPI简介Dify是一款AI应用开发平台,提供多种自然语言处理能力。通过调用Dify开放API,开发者可以快速集成智能对话、文本生成等功能到自己的Java应用中。二、准备工作获取API密钥登录Dify平台控制台在「API密钥」模块创建新的密钥添加依赖org.apache.httpcomponentshttpclient4.5.13com.faste
- 借力 提示词检索解码与 OpenVINO™ GenAI 全面提升 LLM 推理
OpenVINO 中文社区
经验分享
大语言模型(LLM)彻底改变了自然语言处理,推动了聊天机器人、摘要和内容生成等应用的发展。然而,推理效率依然是一个关键挑战,尤其在需要低延迟响应的场景下更为突出。试想你在一家餐厅,经常点同样的菜。服务员不必每次都询问你的订单再传达给厨房,而是直接认出你常点的菜品并立即上菜,这样既缩短了等待时间,也加快了整个服务流程。同样,在文本生成中,模型常常遇到输入提示中的重复模式。与每次都从零开始生成toke
- 100个AI大模型基础概念(收藏版)
程序员鑫港
人工智能大模型ai开发语言java大语言模型LLM
在人工智能技术快速发展的时代背景下,大模型作为核心驱动力,正深刻改变着各行业的发展模式与应用场景。从自然语言处理到计算机视觉,从智能对话系统到科学研究辅助,大模型展现出强大的通用性和适应性。本文将从基础概念、核心技术、数据处理、训练方法、评估体系、应用场景、伦理安全等多个维度,系统阐述100个AI大模型的关键基础知识,帮助读者全面理解这一前沿技术领域。前排提示,文末有大模型AGI-CSDN独家资料
- 深度学习应用于情感识别:利用YOLOv8进行AffectNet情感分类
YOLO实战营
深度学习YOLO分类人工智能目标检测目标跟踪数据挖掘
引言情感识别(EmotionRecognition)是计算机视觉和自然语言处理中的一个重要研究方向,广泛应用于人机交互、智能客服、心理健康监测、视频分析等领域。随着深度学习技术的发展,情感识别取得了显著进展,特别是在面部表情识别方面。面部表情作为人类情感的自然表现之一,能在很大程度上反映个体的情感状态。AffectNet数据集是一个广泛使用的情感识别数据集,它包含了大量带有标注情感标签的面部表情图
- AI 销售系统:重塑销售格局的科技利器
小柔说科技
人工智能科技java
在数字化浪潮汹涌澎湃的当下,人工智能(AI)正以前所未有的速度渗透到各个行业,销售领域也不例外。AI销售系统作为一种融合了先进人工智能技术的创新工具,正逐渐成为企业提升销售效率、优化客户体验、增强市场竞争力的关键因素。一、AI销售系统的概念与核心技术AI销售系统是基于人工智能技术构建的一套综合性销售管理平台,它整合了自然语言处理(NLP)、机器学习(ML)、数据分析、预测建模等多种核心技术。通过这
- Unity AR构建维护系统的以AI驱动增强现实知识检索系统
Morpheon
unityar人工智能
本博客概述了为维护开发的AI驱动增强现实(AR)知识检索系统的开发过程,该系统集成了Unity用于AR、Python服务器用于后端处理,以及ChatGPT用于自然语言处理。该系统允许维护工人通过AR设备(如HoloLens2)查询特定任务的知识(例如,故障排除步骤),并以全息图形式显示上下文感知的响应。Unity账户注册中文账户注册比较困难。它需要额外的验证码验证步骤,有时即使验证成功也不会重定向
- 使用LangChain与Solar进行文本嵌入
Zbb159
langchain
使用LangChain与Solar进行文本嵌入在处理自然语言处理中,文本嵌入是将文本转换为数字向量的一种技术,它使计算机能够理解和处理文本数据。在这篇文章中,我们将探索如何使用LangChain与Solar进行文本嵌入。技术背景介绍文本嵌入可以用于多种自然语言处理任务,例如文本分类、情感分析和语义搜索等。Solar是一种简单易用的嵌入服务,提供了强大的推理能力,可以轻松地将文本转换为嵌入向量。核心
- 医疗大模型深度剖析:腾讯医疗大模型案例,引领智能医疗新时代!
腾讯医疗大模型是混元大模型的医疗版。在DeepSeek爆火之前,腾讯健康已经依据医疗细分场景的具体需求,以腾讯自研的混元大模型,打造出医疗行业大模型。DeepSeek-R1发布后,腾讯健康第一时间完成了混元大模型与DeepSeek的融合。腾讯医疗大模型深度融合医学知识库与自然语言处理技术,旨在为医疗行业提供智能化的辅助解决方案。通过海量医学文献、临床指南、电子病历等专业数据训练,具备强大的医学知识
- NLP市场规模将破千千亿,哪些岗位会成为新风口?
duolapig
人工智能
近年来,自然语言处理(NLP)技术在全球范围内掀起了一场“语言革命”。从智能客服到机器翻译,从情感分析到内容生成,NLP正以惊人的速度重塑人类与机器的交互方式。艾媒咨询数据显示,2023年中国NLP市场规模已达660亿元,预计2027年将突破千亿大关。这一数字背后,不仅是技术迭代的加速,更是一场深刻的人才需求变革。在AI大模型浪潮的推动下,新的职业风口正在形成,而这场变革的核心逻辑,是技术与产业融
- 自然语言处理基础知识入门(三) RNN,LSTM,GRU模型详解
这个男人是小帅
NLP自然语言知识梳理入门rnn自然语言处理lstmgru人工智能神经网络
文章目录前言一、RNN模型1.1RNN的作用1.2RNN基本结构1.3双向循环神经网络1.4深层双向循环神经网络1.5RNN的梯度爆炸和消失问题二、LSTM模型2.1LSTM和RNN的结构对比2.2LSTM模型细节三、GRU模型总结前言在上一章节中,深入探讨了Word2vec模型的两种训练策略以及创新的优化方法,从而得到了优质的词嵌入表示。不仅如此,Word2vec作为一种语言模型,也具备根据上下
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 小白的进阶之路系列之十六----人工智能从初步到精通pytorch综合运用的讲解第九部分
金沙阳
人工智能pytorchpython
从零开始学习NLP在这个由三部分组成的系列中,你将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。你将学习如何从零开始构建循环神经网络NLP的基本数据处理技术如何训练RNN以识别单词的语言来源。从零开始学自然语言处理:使用字符级RNN对名字进行分类我们将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。展示了如何预处理数据以建模NLP。特别是,这些教程展示了如何以
- 人工神经网络:架构原理与技术解析
weixin_47233946
架构
##引言在深度学习和人工智能领域,人工神经网络(ArtificialNeuralNetwork,ANN)作为模拟人脑认知机制的核心技术,已在图像识别、自然语言处理和强化学习等领域实现了革命性突破。从AlphaGo击败人类顶尖棋手到ChatGPT的对话生成能力,ANN的进化持续推动技术边界的扩展。本文将深入剖析人工神经网络的核心原理、技术实现与发展趋势。##一、基础概念与数学模型###1.1生物启发
- Spring中如何使用AI
Mn孟
spring人工智能java后端
Spring是一个用于构建Java应用程序的开源框架,它可以与各种AI技术集成。要在Spring中使用AI,首先需要选择一种AI技术,如机器学习、自然语言处理等。然后可以使用SpringBoot来构建应用程序,并使用相应的AI框架或库来实现AI功能。例如,可以使用TensorFlow或PyTorch来实现机器学习功能,使用NLTK或spaCy来实现自然语言处理功能。此外,还可以使用SpringCl
- OpenAI Agents SDK 客户服务应用案例
lyh1344
easyui前端javascript
OpenAIAgentsSDK客户服务应用案例OpenAIAgentsSDK可用于构建智能化、自动化的客户服务解决方案。以下是一些典型应用案例及实现方法:智能问答助手通过OpenAIAgentsSDK训练一个基于知识库的问答助手,自动回答客户常见问题。可集成到网站、APP或社交媒体平台,提供24/7服务。支持自然语言处理,准确理解客户意图,提供个性化回复。多轮对话处理利用SDK的上下文保持能力,处
- 使用GutenbergLoader加载项目Gutenberg电子书
qq_37836323
langchain人工智能json
在现代应用中,文档加载器被广泛用于处理和分析各种格式的文本数据。在本文中,我们将重点介绍如何使用GutenbergLoader来加载项目Gutenberg的电子书并将其转换为可供后续处理的文档格式。技术背景介绍项目Gutenberg是一个在线数字图书馆,提供大量的免费电子书资源。为了有效地使用这些电子书,我们通常需要将它们的内容加载到一个可处理的文档格式。这使得后续的数据分析、自然语言处理等任务的
- 使用Hugging Face的BGE模型进行文本嵌入
lirxx
人工智能langchain
在文本嵌入领域,BGE(BeijingAcademyofArtificialIntelligenceEmbeddings)模型是开源界的佼佼者。由北京智源人工智能研究院(BAAI)开发,BGE模型以其高效的嵌入性能和开放性获得了广泛的认可。本文将通过HuggingFace平台展示如何使用BGE模型进行文本嵌入。技术背景介绍文本嵌入是将文本数据转换为可计算向量的过程,这在自然语言处理(NLP)中具有
- Java企业技术趋势分析:AI驱动下的Spring AI、LangChain4j与RAG系统架构
在未来等你
Java场景面试宝典AI技术编程JavaSpring
【Java企业技术趋势分析:AI驱动下的SpringAI、LangChain4j与RAG系统架构】开篇在当今快速发展的技术环境中,人工智能(AI)正在以前所未有的速度重塑企业的技术架构和业务流程。Java作为企业级开发的主流语言之一,在AI应用落地方面也迎来了新的机遇和挑战。从自然语言处理(NLP)到机器学习(ML),再到生成式AI(GenerativeAI),Java开发者正在积极拥抱这些新兴技
- PyABSA 入门指南:基于深度学习的情感分析工具包
是纯一呀
DeepLearningAINLP深度学习人工智能NLP
在自然语言处理(NLP)领域,情感分析(SentimentAnalysis)一直是热门任务之一。而基于方面的情感分析(Aspect-BasedSentimentAnalysis,ABSA),则是更细粒度的分析方式——不仅判断正负情绪,还识别情绪对象(方面)和具体情感极性(如好/差)。什么是PyABSA?PyABSA(PythonAspect-BasedSentimentAnalysis)是一个专为
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- 从CoNLL-U格式文件读取文本的实战指南
yunwu12777
langchain交互深度学习
在自然语言处理任务中,使用标准化的文本格式能够显著简化数据处理工作。CoNLL-U格式就是这样一种被广泛应用的文本格式,它是CoNLL-X格式的修订版,主要用于句法分析和词法标注任务。技术背景介绍CoNLL-U格式的文件是纯文本文件,采用UTF-8编码,文本内容包括三类行:词行:每个行代表一个词或标记,包含10个字段,用单个制表符分隔。空行:用于表示句子边界。注释行:以哈希符号(#)开头,用于附加
- 大语言模型应用指南:多模态大语言模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:多模态大语言模型作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大语言模型(MMLM),多媒体数据处理,自然语言理解,图像文本生成,应用场景探索1.背景介绍1.1问题的由来随着人工智能技术的迅速发展,特别是自然语言处理(NLP)领域的突破,大型语言模型(LargeLanguageModels,LLMs)成为研究热点。
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》