深度学习-矩阵变换

矩阵求逆性质

( A T ) T = A (A^T)^T = A (AT)T=A

( λ A ) T = λ A T (\lambda A)^T = \lambda A^T (λA)T=λAT

( A ± B ) T = A T ± B T (A \pm B) ^T = A^T \pm B^T (A±B)T=AT±BT

( A × B ) T = B T × A T (A \times B)^T = B^T \times A^T (A×B)T=BT×AT

矩阵求导性质

∂ A X ∂ X = A T ⇒ ∂ A T X ∂ X = A \frac{\partial AX}{\partial X} = A^T \Rightarrow \frac{\partial A^TX}{\partial X} = A \quad \\ \quad \\ XAX=ATXATX=A

∂ X A ∂ X = A \frac{\partial XA}{\partial X} = A \quad \\ \quad \\ XXA=A

∂ A X B ∂ X = A T B T ⇒ ∂ A X B ∂ X T = B A \frac{\partial AXB}{\partial X} = A^TB^T \Rightarrow \frac{\partial AXB}{\partial X^T} = BA \quad \\ \quad \\ XAXB=ATBTXTAXB=BA

∂ X T A X ∂ X = ( A + A T ) X ⇒ ∂ X T A A T X ∂ X = 2 A A T X ⇒ ∂ X T X ∂ X = ∂ X T E E T X ∂ X = 2 E E T X = 2 X \frac{\partial X^TAX}{\partial X} = (A + A^T) X \\ \quad \\ \quad \\ \Rightarrow \frac{\partial X^TAA^TX}{\partial X} = 2AA^TX \\ \quad \\ \quad \\ \Rightarrow \frac{\partial X^TX}{\partial X} = \frac{\partial X^TEE^TX}{\partial X} = 2EE^TX = 2X XXTAX=(A+AT)XXXTAATX=2AATXXXTX=XXTEETX=2EETX=2X

维基百科:https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector_identities

求导定义:求导法则.pdf wqmv

矩阵求导术上: https://zhuanlan.zhihu.com/p/24709748

矩阵求导术下:https://zhuanlan.zhihu.com/p/24863977

你可能感兴趣的:(深度学习)