数据库连接池

文章目录

  • 数据库连接池
  • 一、 如何在python中操作数据库?
  • 二、 在web中使用原生sql(pymysql)操作数据库?
      • 2.1 在web中通过原生sql操作数据库会出现的问题。
        • 示例1:
        • 示例2
        • 示例3
        • 小结:
      • 2.1 什么是数据库连接池呢?
      • 2.2 Python数据库连接池DBUtiles
      • 2.3 实际开发小应用案例:

数据库连接池

一、 如何在python中操作数据库?

在后端开发中免不掉与数据库打交道,无非是使用orm或者原生sql来操作数据库。

在python中通过原生sql操作数据库,主流就两种。

  • 使用pymysql模块:pymysql支持python2.xpython3.x的版本
  • 使用mysqldb模块:mysqldb仅支持python2.x的版本

orm的使用以flask和django为例。

  • flask使用的orm是基于SQLAlchemy(SQLAlchemy本就是orm),flask团队并在SQLAlchemy基础之上又封装了一个Flask-SQLchemy并予以应用 。
  • django使用的orm是django自带的orm。

orm的操作数据库的方式我们已经熟知了,这里我们聊一聊如何在web中使用原生sql操作数据库,以及会出现的问题。

二、 在web中使用原生sql(pymysql)操作数据库?

2.1 在web中通过原生sql操作数据库会出现的问题。

数据库连接池_第1张图片

示例1:

把所有的数据库操作全部都放在了视图函数里面。

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello():
    import pymysql
    CONN = pymysql.connect(host='127.0.0.1',
                           port=3306,
                           user='root',
                           password='123',
                           database='pooldb',
                           charset='utf8')

    cursor = CONN.cursor()
    cursor.execute('select * from tb1')
    result = cursor.fetchall()
    cursor.close()

    print(result)

    return "Hello World"

if __name__ == '__main__':
    app.run()

会出现的问题

  • 很多个用户并发的来请求,一个用户可以理解为一个线程,每个线程都会跟数据库建立连接,数据库承受不了这种量级的连接数。

示例2

为了避免之前每个用户都建立连接,我们把数据库连接放到了全局变量里面,只会建立一次连接,但是依然会出现问题。

from flask import Flask

app = Flask(__name__)
import pymysql
CONN = pymysql.connect(host='127.0.0.1',
                           port=3306,
                           user='root',
                           password='123',
                           database='pooldb',
                           charset='utf8')

@app.route("/")
def hello():
    cursor = CONN.cursor()
    cursor.execute('select * from tb1')
    result = cursor.fetchall()
    cursor.close()

    print(result)

    return "Hello World"

if __name__ == '__main__':
    app.run()

会出现的问题:

  • 会出现线程安全问题,比如如果第一个用户拿到了连接给关闭了,而第二个用户正在进行查询,第二个用户查询的时候第一个用户把连接断了,会导致第二个用户出现问题。
  • 假设第一用户查询了一下表1,正准备获取查询的内容,这时第二个人查询了一下表2,由于cursor对象都是同一个,第一个人获取到的查询内容就是表2的内容了,所以也会出现线程安全问题

示例3

为了避免之前的线程不安全,在示例2的基础上加上一把线程锁

from flask import Flask
import threading
app = Flask(__name__)
import pymysql
CONN = pymysql.connect(host='127.0.0.1',
                           port=3306,
                           user='root',
                           password='123',
                           database='pooldb',
                           charset='utf8')

@app.route("/")
def hello():
    with threading.Lock():
        cursor = CONN.cursor()
        cursor.execute('select * from tb1')
        result = cursor.fetchall()
        cursor.close()

        print(result)

    return "Hello World"

if __name__ == '__main__':
    app.run()

会出现的问题

  • 根据代码可以发现,只是在示例2的基础上加了一把线程锁,确实是保证了线程安全,但是所有关于数据库操作的请求变成了串行,无法实现并发了。

小结:

  • 如果直接连接坐在视图函数中,会导致每个用户都要创建连接,数据库承受不了这种量级的连接数。
  • 如果连接数据库的内容做成全局变量的话,无法保证线程安全。
  • 如果定义全局变量用于连接数据库,并且在线程中操作数据库内容加线程锁头,就会变成串行,无法保证并发

所以我们既要控制数据库的连接数,又要保证线程安全,又要保证web的并发,这个时候最终的解决方案是数据库连接池。

2.1 什么是数据库连接池呢?

数据库连接池概念:数据库连接池负责分配、管理和释放数据库连接,它允许应用程序重复使用一个现有的数据库连接,而不是再重新建立一个,这项技术能明显提高对数据库操作的性能。

图解

数据库连接池_第2张图片

通俗的讲就是,假设数据库连接池中有5个连接对象,每个用户简单理解为一个线程,比如现在有6个用户同时来访问,6个线程去数据库连接池里面申请数据库的连接对象。前5个线程每个都申请到了连接对象去操作数据库,每个线程使用完了数据库连接对象会归还给数据库连接池,那么第6个线程会等待前5个线程归还连接对象给连接池,再具体一点是:假设第一个线程使用完了连接对象,那么此时6个线程才会结束等待,从而申请到连接对象,以此类推。

数据库连接池_第3张图片

2.2 Python数据库连接池DBUtiles

DBUtils 是Python的一个用于实现数据库连接池的模块。

首先安装一下DBUtils模块。

pip install DBUtils

DBUtils连接池的两种连接模式:

**模式一:**为每个线程创建一个连接,线程即使调用了close方法,也不会关闭,只是把连接重新放到连接池,仅供自己的线程再次使用,当线程终止时,连接会自动关闭。(不推荐使用,因为这样需要自己控制线程数量)

import pymysql
from DBUtils.PersistentDB import PersistentDB
from threading import local

POOL = PersistentDB(
    creator=pymysql,  # 使用链接数据库的模块
    maxusage=None,  # 一个链接最多被重复使用的次数,None表示无限制
    setsession=[],  # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]
    ping=0, # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always
    closeable=False,
    # 如果为False时, conn.close() 实际上被忽略,供下次使用,再线程关闭时,才会自动关闭链接。如果为True时, conn.close()则关闭链接,那么再次调用pool.connection时就会报错,因为已经真的关闭了连接(pool.steady_connection()可以获取一个新的链接)
    threadlocal=None,  # 如果为none,用默认的threading.Loacl对象,否则可以自己封装一个local对象进行替换
    host='127.0.0.1',
    port=3306,
    user='root',
    password='123',
    database='pooldb',
    charset='utf8'
)

def func():
    conn = POOL.connection(shareable=False)
    cursor = conn.cursor()
    cursor.execute('select * from tb1')
    result = cursor.fetchall()
    cursor.close()
    conn.close()

func()

**模式二:**创建一批连接到连接池,供所有线程共享使用。

import time
import pymysql
import threading
from DBUtils.PooledDB import PooledDB, SharedDBConnection
POOL = PooledDB(
    creator=pymysql,  # 使用链接数据库的模块
    maxconnections=6,  # 连接池允许的最大连接数,0和None表示不限制连接数
    mincached=2,  # 初始化时,链接池中至少创建的空闲的链接,0表示不创建
    maxcached=5,  # 链接池中最多闲置的链接,0和None不限制
    maxshared=3,  # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。
    blocking=True,  # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错
    maxusage=None,  # 一个链接最多被重复使用的次数,None表示无限制
    setsession=[],  # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]
    ping=0,
    # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always
    host='127.0.0.1',
    port=3306,
    user='root',
    password='123',
    database='pooldb',
    charset='utf8'
)


def func():
    conn = POOL.connection()
    cursor = conn.cursor()
    cursor.execute('select * from tb1')
    result = cursor.fetchall()
    conn.close()


func()

数据库连接池_第4张图片

2.3 实际开发小应用案例:

案例目录:

- app.py
- db_helper.py

app.py

from flask import Flask
from db_helper import SQLHelper


app = Flask(__name__)

@app.route("/")
def hello():
    result = SQLHelper.fetch_one('select * from t1',[])
    print(result)
    return "Hello World"

if __name__ == '__main__':
    app.run()

db_helper.py

import pymysql
from DBUtils.PooledDB import PooledDB
POOL = PooledDB(
    creator=pymysql,  # 使用链接数据库的模块
    maxconnections=6,  # 连接池允许的最大连接数,0和None表示不限制连接数
    mincached=2,  # 初始化时,链接池中至少创建的空闲的链接,0表示不创建
    maxcached=5,  # 链接池中最多闲置的链接,0和None不限制
    maxshared=3,  # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。
    blocking=True,  # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错
    maxusage=None,  # 一个链接最多被重复使用的次数,None表示无限制
    setsession=[],  # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]
    ping=0,
    # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always
    host='127.0.0.1',
    port=3306,
    user='root',
    password='123',
    database='pooldb',
    charset='utf8'
)


class SQLHelper(object):

    @staticmethod
    def fetch_one(sql,args):
        conn = POOL.connection()
        cursor = conn.cursor()
        cursor.execute(sql, args)
        result = cursor.fetchone()
        conn.close()
        return result

    @staticmethod
    def fetch_all(self,sql,args):
        conn = POOL.connection()
        cursor = conn.cursor()
        cursor.execute(sql, args)
        result = cursor.fetchall()
        conn.close()
        return result

以后在开发的过程中我们可以基于数据库连接池,基于pymysql,来实现自己个性化操作数据库的需求。

你可能感兴趣的:(框架,flask,数据库,多线程)