EPOLL 内核实现

epoll是由一组系统调用组成。
     int epoll_create(int size);
     int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
     int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int timeout);
     select/poll的缺点在于:
     1.每次调用时要重复地从用户态读入参数。
     2.每次调用时要重复地扫描文件描述符。
     3.每次在调用开始时,要把当前进程放入各个文件描述符的等待队列。在调用结束后,又把进程从各个等待队列中删除。
     在实际应用中,select/poll监视的文件描述符可能会非常多,如果每次只是返回一小部分,那么,这种情况下select/poll

显得不够高效。epoll的设计思路,是把select/poll单个的操作拆分为1个epoll_create+多个epoll_ctrl+一个epoll_wait。

epoll机制实现了自己特有的文件系统eventpoll filesystem

/* File callbacks that implement the eventpoll file behaviour */ static const struct file_operations eventpoll_fops = { .release = ep_eventpoll_release, .poll = ep_eventpoll_poll };

epoll_create创建一个属于该文件系统的文件,然后返回其文件描述符。

 

struct eventpoll 保存了epoll文件节点的扩展信息,该结构保存于file结构体的private_data域中,每个epoll_create创建的epoll

描述符都分配一个该结构体。该结构的各个成员的定义如下,注释也很详细。

/* * This structure is stored inside the "private_data" member of the file * structure and rapresent the main data sructure for the eventpoll * interface. */ struct eventpoll { /* Protect the this structure access,可用于中断上下文 */ spinlock_t lock; /* * This mutex is used to ensure that files are not removed * while epoll is using them. This is held during the event * collection loop, the file cleanup path, the epoll file exit * code and the ctl operations.用户进程上下文中 */ struct mutex mtx; /* Wait queue used by sys_epoll_wait() */ wait_queue_head_t wq; /* Wait queue used by file->poll() */ wait_queue_head_t poll_wait; /* List of ready file descriptors */ struct list_head rdllist; /* RB tree root used to store monitored fd structs */ struct rb_root rbr; /* * This is a single linked list that chains all the "struct epitem" that * happened while transfering ready events to userspace w/out * holding ->lock. */ struct epitem *ovflist; /* The user that created the eventpoll descriptor */ struct user_struct *user; };

 

而通过epoll_ctl接口加入该epoll描述符监听的套接字则属于socket filesystem,这点一定要注意。每个添加的待监听(这里监听

和listen调用不同)都对应于一个epitem结构体,该结构体已红黑树的结构组织,eventpoll结构中保存了树的根节点(rbr成员)。

同时有监听事件到来的套接字的该结构以双向链表组织起来,链表头也保存在eventpoll中(rdllist成员)。

/* * Each file descriptor added to the eventpoll interface will * have an entry of this type linked to the "rbr" RB tree. */ struct epitem { /* RB tree node used to link this structure to the eventpoll RB tree */ struct rb_node rbn; /* List header used to link this structure to the eventpoll ready list */ struct list_head rdllink; /* * Works together "struct eventpoll"->ovflist in keeping the * single linked chain of items. */ struct epitem *next; /* The file descriptor information this item refers to */ struct epoll_filefd ffd; /* Number of active wait queue attached to poll operations */ int nwait; /* List containing poll wait queues */ struct list_head pwqlist; /* The "container" of this item */ struct eventpoll *ep; /* List header used to link this item to the "struct file" items list */ struct list_head fllink; /* The structure that describe the interested events and the source fd */ struct epoll_event event; };

 

epoll_create的调用很简单,就是创建一个epollevent的文件,并返回文件描述符。

epoll_ctl用来添加,删除以及修改监听项。

/* * The following function implements the controller interface for * the eventpoll file that enables the insertion/removal/change of * file descriptors inside the interest set. */ SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, struct epoll_event __user *, event) { int error; struct file *file, *tfile; struct eventpoll *ep; struct epitem *epi; struct epoll_event epds; DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)/n", current, epfd, op, fd, event)); error = -EFAULT; if (ep_op_has_event(op) && copy_from_user(&epds, event, sizeof(struct epoll_event))) goto error_return; /* Get the "struct file *" for the eventpoll file */ error = -EBADF; file = fget(epfd); if (!file) goto error_return; /* Get the "struct file *" for the target file */ tfile = fget(fd); if (!tfile) goto error_fput; /* The target file descriptor must support poll */ error = -EPERM; if (!tfile->f_op || !tfile->f_op->poll) goto error_tgt_fput; /* * We have to check that the file structure underneath the file descriptor * the user passed to us _is_ an eventpoll file. And also we do not permit * adding an epoll file descriptor inside itself. */ error = -EINVAL; if (file == tfile || !is_file_epoll(file)) goto error_tgt_fput; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ ep = file->private_data; mutex_lock(&ep->mtx); /* * Try to lookup the file inside our RB tree, Since we grabbed "mtx" * above, we can be sure to be able to use the item looked up by * ep_find() till we release the mutex. */ epi = ep_find(ep, tfile, fd); error = -EINVAL; switch (op) { case EPOLL_CTL_ADD: if (!epi) { epds.events |= POLLERR | POLLHUP; error = ep_insert(ep, &epds, tfile, fd); } else error = -EEXIST; break; case EPOLL_CTL_DEL: if (epi) error = ep_remove(ep, epi); else error = -ENOENT; break; case EPOLL_CTL_MOD: if (epi) { epds.events |= POLLERR | POLLHUP; error = ep_modify(ep, epi, &epds); } else error = -ENOENT; break; } mutex_unlock(&ep->mtx); error_tgt_fput: fput(tfile); error_fput: fput(file); error_return: DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d/n", current, epfd, op, fd, event, error)); return error; }

同样,代码很清楚。先来看看添加流程

/* * Must be called with "mtx" held. */ static int ep_insert(struct eventpoll *ep, struct epoll_event *event, struct file *tfile, int fd) { int error, revents, pwake = 0; unsigned long flags; struct epitem *epi; struct ep_pqueue epq; /* 不允许超过最大监听个数*/ if (unlikely(atomic_read(&ep->user->epoll_watches) >= max_user_watches)) return -ENOSPC; if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) return -ENOMEM; /* Item initialization follow here ... */ INIT_LIST_HEAD(&epi->rdllink); INIT_LIST_HEAD(&epi->fllink); INIT_LIST_HEAD(&epi->pwqlist); epi->ep = ep; ep_set_ffd(&epi->ffd, tfile, fd); epi->event = *event; epi->nwait = 0; epi->next = EP_UNACTIVE_PTR; /* Initialize the poll table using the queue callback */ epq.epi = epi; init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); /* * Attach the item to the poll hooks and get current event bits. * We can safely use the file* here because its usage count has * been increased by the caller of this function. Note that after * this operation completes, the poll callback can start hitting * the new item. */ revents = tfile->f_op->poll(tfile, &epq.pt); /* * We have to check if something went wrong during the poll wait queue * install process. Namely an allocation for a wait queue failed due * high memory pressure. */ error = -ENOMEM; if (epi->nwait < 0) goto error_unregister; /* Add the current item to the list of active epoll hook for this file */ spin_lock(&tfile->f_ep_lock); list_add_tail(&epi->fllink, &tfile->f_ep_links); spin_unlock(&tfile->f_ep_lock); /* * Add the current item to the RB tree. All RB tree operations are * protected by "mtx", and ep_insert() is called with "mtx" held. */ ep_rbtree_insert(ep, epi); /* We have to drop the new item inside our item list to keep track of it */ spin_lock_irqsave(&ep->lock, flags); /* If the file is already "ready" we drop it inside the ready list */ if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { list_add_tail(&epi->rdllink, &ep->rdllist); /* Notify waiting tasks that events are available */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; } spin_unlock_irqrestore(&ep->lock, flags); atomic_inc(&ep->user->epoll_watches); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&psw, &ep->poll_wait); DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)/n", current, ep, tfile, fd)); return 0; error_unregister: ep_unregister_pollwait(ep, epi); /* * We need to do this because an event could have been arrived on some * allocated wait queue. Note that we don't care about the ep->ovflist * list, since that is used/cleaned only inside a section bound by "mtx". * And ep_insert() is called with "mtx" held. */ spin_lock_irqsave(&ep->lock, flags); if (ep_is_linked(&epi->rdllink)) list_del_init(&epi->rdllink); spin_unlock_irqrestore(&ep->lock, flags); kmem_cache_free(epi_cache, epi); return error; }

init_poll_funcptr函数注册poll table回调函数。然后程序的下一步是调用tfile的poll函数,并且poll函数的第2个参数为poll table,

这是epoll机制中唯一对监听套接字调用poll时第2个参数不为NULL的时机。ep_ptable_queue_proc函数的作用是注册等待函数

并添加到指定的等待队列,所以在第一次调用后,该信息已经存在了,无需在poll函数中再次调用了。

/* * This is the callback that is used to add our wait queue to the * target file wakeup lists. */ static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, poll_table *pt) { struct epitem *epi = ep_item_from_epqueue(pt); struct eppoll_entry *pwq; if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { /* 为监听套接字注册一个等待回调函数,在唤醒时调用*/ init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); pwq->whead = whead; pwq->base = epi; add_wait_queue(whead, &pwq->wait); list_add_tail(&pwq->llink, &epi->pwqlist); epi->nwait++; } else { /* We have to signal that an error occurred */ epi->nwait = -1; } }

 

那么该poll函数到底是怎样的呢,这就要看我们在传入到epoll_ctl前创建的套接字的类型(socket调用)。对于创建的tcp套接字

来说,可以按照创建流程找到其对应得函数是tcp_poll。

tcp_poll的主要功能为:

  1. 如果poll table回调函数存在(ep_ptable_queue_proc),则调用它来等待。注意这只限第一次调用,在后面的poll中都无需此步
  2. 判断事件的到达。(根据tcp的相关成员)

tcp_poll注册到的等待队列是sock成员的sk_sleep,等待队列在对应的IO事件中被唤醒。当等待队列被唤醒时会调用相应的等待回调函数

,前面看到我们注册的是函数ep_poll_callback。该函数可能在中断上下文中调用。

/* * This is the callback that is passed to the wait queue wakeup * machanism. It is called by the stored file descriptors when they * have events to report. */ static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) { int pwake = 0; unsigned long flags; struct epitem *epi = ep_item_from_wait(wait); struct eventpoll *ep = epi->ep; DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p/n", current, epi->ffd.file, epi, ep)); /* 对eventpoll的spinlock加锁,因为是在中断上下文中*/ spin_lock_irqsave(&ep->lock, flags); /* 没有事件到来 * If the event mask does not contain any poll(2) event, we consider the * descriptor to be disabled. This condition is likely the effect of the * EPOLLONESHOT bit that disables the descriptor when an event is received, * until the next EPOLL_CTL_MOD will be issued. */ if (!(epi->event.events & ~EP_PRIVATE_BITS)) goto out_unlock; /* * If we are trasfering events to userspace, we can hold no locks * (because we're accessing user memory, and because of linux f_op->poll() * semantics). All the events that happens during that period of time are * chained in ep->ovflist and requeued later on. */ if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { if (epi->next == EP_UNACTIVE_PTR) { epi->next = ep->ovflist; ep->ovflist = epi; } goto out_unlock; } /* If this file is already in the ready list we exit soon */ if (ep_is_linked(&epi->rdllink)) goto is_linked; /* 加入ready queue*/ list_add_tail(&epi->rdllink, &ep->rdllist); is_linked: /* * Wake up ( if active ) both the eventpoll wait list and the ->poll() * wait list. */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; out_unlock: spin_unlock_irqrestore(&ep->lock, flags); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&psw, &ep->poll_wait); return 1; }

 

注意这里有2中队列,一种是在epoll_wait调用中使用的eventpoll的等待队列,用于判断是否有监听套接字可用,一种是对应于每个套接字

的等待队列sk_sleep,用于判断每个监听套接字上事件,该队列唤醒后调用ep_poll_callback,在该函数中又调用wakeup函数来唤醒前一种

队列,来通知epoll_wait调用进程。

static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, int maxevents, long timeout) { int res, eavail; unsigned long flags; long jtimeout; wait_queue_t wait; /* * Calculate the timeout by checking for the "infinite" value ( -1 ) * and the overflow condition. The passed timeout is in milliseconds, * that why (t * HZ) / 1000. */ jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; retry: spin_lock_irqsave(&ep->lock, flags); res = 0; if (list_empty(&ep->rdllist)) { /* * We don't have any available event to return to the caller. * We need to sleep here, and we will be wake up by * ep_poll_callback() when events will become available. */ init_waitqueue_entry(&wait, current); wait.flags |= WQ_FLAG_EXCLUSIVE; __add_wait_queue(&ep->wq, &wait); for (;;) { /* * We don't want to sleep if the ep_poll_callback() sends us * a wakeup in between. That's why we set the task state * to TASK_INTERRUPTIBLE before doing the checks. */ set_current_state(TASK_INTERRUPTIBLE); if (!list_empty(&ep->rdllist) || !jtimeout) break; if (signal_pending(current)) { res = -EINTR; break; } spin_unlock_irqrestore(&ep->lock, flags); jtimeout = schedule_timeout(jtimeout); spin_lock_irqsave(&ep->lock, flags); } __remove_wait_queue(&ep->wq, &wait); set_current_state(TASK_RUNNING); } /* Is it worth to try to dig for events ? */ eavail = !list_empty(&ep->rdllist); spin_unlock_irqrestore(&ep->lock, flags); /* * Try to transfer events to user space. In case we get 0 events and * there's still timeout left over, we go trying again in search of * more luck. */ if (!res && eavail && !(res = ep_send_events(ep, events, maxevents)) && jtimeout) goto retry; return res; }

该函数是在epoll_wait中调用的等待函数,其等待被ep_poll_callback唤醒,然后调用ep_send_events来把到达事件copy到用户空间,然后

epoll_wait才返回。

 

最后我们来看看ep_poll_callback函数和ep_send_events函数的同步,因为他们都要操作ready queue。

eventpoll中巧妙地设置了2种类型的锁,一个是mtx,是个mutex类型,是对该描述符操作的基本同步锁,可以睡眠;所以又存在了另外一个

锁,lock,它是一个spinlock类型,不允许睡眠,所以用在ep_poll_callback中,注意mtx不能用于此。

注意由于ep_poll_callback函数中会涉及到对eventpoll的ovflist和rdllist成员的访问,所以在任意其它地方要访问时都要先加mxt,在加lock锁。

 

由于中断的到来时异步的,为了方便,先看ep_send_events函数。

static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events, int maxevents) { int eventcnt, error = -EFAULT, pwake = 0; unsigned int revents; unsigned long flags; struct epitem *epi, *nepi; struct list_head txlist; INIT_LIST_HEAD(&txlist); /* * We need to lock this because we could be hit by * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). */ mutex_lock(&ep->mtx); /* * Steal the ready list, and re-init the original one to the * empty list. Also, set ep->ovflist to NULL so that events * happening while looping w/out locks, are not lost. We cannot * have the poll callback to queue directly on ep->rdllist, * because we are doing it in the loop below, in a lockless way. */ spin_lock_irqsave(&ep->lock, flags); list_splice(&ep->rdllist, &txlist); INIT_LIST_HEAD(&ep->rdllist); ep->ovflist = NULL; spin_unlock_irqrestore(&ep->lock, flags); /* * We can loop without lock because this is a task private list. * We just splice'd out the ep->rdllist in ep_collect_ready_items(). * Items cannot vanish during the loop because we are holding "mtx". */ for (eventcnt = 0; !list_empty(&txlist) && eventcnt < maxevents;) { epi = list_first_entry(&txlist, struct epitem, rdllink); list_del_init(&epi->rdllink); /* * Get the ready file event set. We can safely use the file * because we are holding the "mtx" and this will guarantee * that both the file and the item will not vanish. */ revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); revents &= epi->event.events; /* * Is the event mask intersect the caller-requested one, * deliver the event to userspace. Again, we are holding * "mtx", so no operations coming from userspace can change * the item. */ if (revents) { if (__put_user(revents, &events[eventcnt].events) || __put_user(epi->event.data, &events[eventcnt].data)) goto errxit; if (epi->event.events & EPOLLONESHOT) epi->event.events &= EP_PRIVATE_BITS; eventcnt++; } /* * At this point, noone can insert into ep->rdllist besides * us. The epoll_ctl() callers are locked out by us holding * "mtx" and the poll callback will queue them in ep->ovflist. */ if (!(epi->event.events & EPOLLET) && (revents & epi->event.events)) list_add_tail(&epi->rdllink, &ep->rdllist); } error = 0; errxit: spin_lock_irqsave(&ep->lock, flags); /* * During the time we spent in the loop above, some other events * might have been queued by the poll callback. We re-insert them * inside the main ready-list here. */ for (nepi = ep->ovflist; (epi = nepi) != NULL; nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { /* * If the above loop quit with errors, the epoll item might still * be linked to "txlist", and the list_splice() done below will * take care of those cases. */ if (!ep_is_linked(&epi->rdllink)) list_add_tail(&epi->rdllink, &ep->rdllist); } /* * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after * releasing the lock, events will be queued in the normal way inside * ep->rdllist. */ ep->ovflist = EP_UNACTIVE_PTR; /* * In case of error in the event-send loop, or in case the number of * ready events exceeds the userspace limit, we need to splice the * "txlist" back inside ep->rdllist. */ list_splice(&txlist, &ep->rdllist); if (!list_empty(&ep->rdllist)) { /* * Wake up (if active) both the eventpoll wait list and the ->poll() * wait list (delayed after we release the lock). */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; } spin_unlock_irqrestore(&ep->lock, flags); mutex_unlock(&ep->mtx); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&psw, &ep->poll_wait); return eventcnt == 0 ? error: eventcnt; }

该函数的注释也很清晰,不过我们从总体上分析下。

 

首先函数加mtx锁,这时必须的。

然后得工作是要读取ready queue,但是中断会写这个成员,所以要加spinlock;但是接下来的工作会sleep,所以在整个loop都加spinlock显然

会阻塞ep_poll_callback函数,从而阻塞中断,这是个很不好的行为,也不可取。于是epoll中在eventpoll中设置了另一个成员ovflist。在读取ready

queue前,我们设置该成员为NULL,然后就可以释放spinlock了。为什么这样可行呢,因为对应的,在ep_poll_callback中,获取spinlock后,对于

到达的事件并不总是放入ready queue,而是先判断ovflist是否为EP_UNACTIVE_PTR。

if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { /* 进入此处说明用用户进程在调用ep_poll_callback,所以把事件加入ovflist中,而不是ready queue中*/ if (epi->next == EP_UNACTIVE_PTR) {/* 如果此处条件不成立,说明该epi已经在ovflist中,所以直接返回*/ epi->next = ep->ovflist; ep->ovflist = epi; } goto out_unlock; }

 

所以在此期间,到达的事件放入了ovflist中。当loop结束后,函数接着遍历该list,添加到ready queue中,最后设置ovflist为EP_UNACTIVE_PTR,

这样下次中断中的事件可以放入ready queue了。最后判断是否有其他epoll_wait调用被阻塞,则唤醒。

 

 

 

从源代码中,可以看出epoll的几大优点:

  1. 用户传入的信息保存在内核中了,无需每次传入
  2. 事件监听机制不在是 整个监听队列,而是每个监听套接字在有事件到达时通过等待回调函数异步通知epoll,然后再返回给用户。

同时epoll中的同步机制也是一个内核编程的设计经典,值得深入理解。


 

你可能感兴趣的:(网络协议栈,callback,descriptor,events,list,struct,file)