- 【3.6 python中的numpy编写一个“手写数字识”的神经网络】
wang151038606
深度学习入门pythonnumpy神经网络
3.6python中的numpy编写一个“手写数字识”的神经网络要使用Python中的NumPy库从头开始编写一个“手写数字识别”的神经网络,我们通常会处理MNIST数据集,这是一个广泛使用的包含手写数字的图像数据集。但是,完全用NumPy来实现神经网络(包括数据的加载、预处理、模型定义、前向传播、损失计算、反向传播和权重更新)是一个相当复杂的任务,因为NumPy本身不提供自动微分或高级优化算法(
- Pytorch ResNet Fashion-Mnist
hyhchaos
pytorch实现ResNetonFashion-MNISTfrom__future__importprint_functionimporttorchimporttimeimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transformsastransformsfromtorchimp
- 神经网络分类任务python入门
三十度角阳光的问候
神经网络分类python
目录Mnist分类任务读取Mnist数据集转换成tensor才能参与后续建模训练torch.nn.functional创建一个model来更简化代码使用TensorDataset和DataLoader来简化整个过程Mnist分类任务-网络基本构建与训练方法,常用函数解析-torch.nn.functional模块-nn.Module模块读取Mnist数据集-会自动进行下载frompathlibim
- 实现CNN对mnist手写数字分类
文哥的学习日记
本文使用的tensorflow版本:1.4tensorflow安装:pipinstalltensorflow1、CNN哇咔咔,熟悉的味道,自己第一次接触tensorflow也是写的CNN的例子,当时对于CNN也是一知半解,经过了一年,终于差不多搞清楚了CNN的原理。CNN中需要理解的主要有两点,稀疏连接SparseConnectivity(每个神经元仅与前一层部分神经元相连接)以及参数共享Para
- torch.nn到底是什么?
yanglamei1962
PyTorch学习教程python深度学习pytorch
torch.nn到底是什么?我们建议将本教程作为笔记本而不是脚本来运行。要下载笔记本(.ipynb)文件,请单击页面顶部的链接。PyTorch提供设计精美的模块和类torch.nn,torch.optim,Dataset和DataLoader神经网络。为了充分利用它们的功能并针对您的问题对其进行自定义,您需要真正了解它们在做什么。为了建立这种理解,我们将首先在MNIST数据集上训练基本神经网络,而
- 深度学习五种不同代码实现,神经网络,机器学习
学呗~那不然呢
pycharm
第一种importnumpyasnpimporttensorflowastfmnist=tf.keras.datasets.mnistimportmatplotlib.pyplotaspltimportmatplotlibmatplotlib.use("TkAgg")(x_train,y_train),(x_test,y_test)=mnist.load_data()x_train=x_train
- Python(PyTorch)物理变化可微分神经算法
亚图跨际
算法Python神经网络物理变化分层物理计算多模机械振荡非线性电子振荡光学谐波可微分数学模型动力方程
要点使用受控物理变换序列实现可训练分层物理计算|多模机械振荡、非线性电子振荡器和光学二次谐波生成神经算法验证|训练输入数据,物理系统变换产生输出和可微分数字模型估计损失的梯度|多模振荡对输入数据进行可控卷积|物理神经算法数学表示、可微分数学模型|MNIST和元音数据集评估算法语言内容分比PyTorch可微分优化假设张量xxx是元参数,aaa是普通参数(例如网络参数)。我们有内部损失Lin=a0⋅x
- 24.8.19学习笔记(MNIST,)
kkkkk021106
学习笔记
pytorchMNIST手写数字识别:importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms#设定随机种子以保证结果可复现torch.manual_seed(0)#定义超参数batch_size=32learning_rate=0.001num_epochs=10#1
- 变分自编码器(VAE)PyTorch Lightning 实现
小嗷犬
Python深度学习pytorch人工智能python
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录VAE简介基本原理应用与优点缺点与挑战使用VAE生成MNIST手写数字忽略警告导入必要的库设置随机种子cuDNN设置超参数设置数据加载定义VAE模型定义损失函数定义Lightning模型训练模型绘制训
- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- TensorFlow 在mnist上实现siamese net,出现please use urllib or similar directly错误
qq_41895190
tensorflowTensorFlowmnistsiamesenetmnist手写数字分类手写数字分类
TensorFlow在mnist上实现siamesenet(TensorFlow实现mnist手写数字分类,也用同样的方法解决)在使用fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.read_data_sets('./data/mnist',one_hot=True)导入mnist数据集时,无法下载。出
- 运行《tensorflow21天》的warning
guxue365
AI
在运行第一章的时候所出现得提示信息wt@wt-desktop:~/software/AI/chapter_1$pythondownload.pyWARNING:tensorflow:Fromdownload.py:5:read_data_sets(fromtensorflow.contrib.learn.python.learn.datasets.mnist)isdeprecatedandwill
- Tensorflow基础代码报错学习笔记11——classification分类学习
7STARX
tensorflow学习笔记tensorflow机器学习python
原教程地址原代码更换了tensorflow1.0版本之后代码跟着up主的教程敲就可以了,这里面没什么需要改动的importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_data#如果电脑中没有数据集,会自动下载mnist=input_data.read_data_sets('MNIST_data',one_hot=
- 深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer
seasonsyy
深度学习小知识深度学习开源框架pytorch
2.6深度学习主流开源框架表2.1深度学习主流框架参数对比框架关键词总结框架关键词基本数据结构(都是高维数组)Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”BlobTensorFlow“安装简单pip”TensorPytorch“定位:快速实验研究”,“简单”,“灵活”TensorTheanoד用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时
- 机器学习第二十五周周报 ConvLSTM
沽漓酒江
机器学习人工智能
文章目录week25ConvLSTM摘要Abstract一、李宏毅机器学习二、文献阅读1.题目2.abstract3.网络架构3.1降水预报问题的建模3.2ConvolutionalLSTM3.3编码-预测结构4.文献解读4.1Introduction4.2创新点4.3实验过程4.3.1Moving-MNISTDataset4.3.2雷达回波数据集4.4结论三、基于pytorch实现ConvLST
- AIGC实战——能量模型(Energy-Based Model)
盼小辉丶
AIGC深度学习能量模型
AIGC实战——能量模型0.前言1.能量模型1.1模型原理1.2MNIST数据集1.3能量函数2.使用Langevin动力学进行采样2.1随机梯度Langevin动力学2.2实现Langevin采样函数3.利用对比散度训练小结系列链接0.前言能量模型(Energy-basedModel,EBM)是一类常见的生成模型,其借鉴了物理系统建模的一个关键思想,即事件的概率可以用玻尔兹曼分布来表示。玻尔兹曼
- 使用Keras和tensorfow,CNN手写数字识别
smallcui
查看数据fromtensorflow.keras.datasetsimportmnistimportmatplotlib.pyplotasplt(train_x,train_y),(test_x,test_Y)=mnist.load_data()plt.figure(figsize=(10,10))foriinrange(25):plt.subplot(5,5,i+1)plt.xticks([])
- tensorflow利用CNN实现MNIST图片识别
Lornatang
FunctioninstructionsThedataData:Thisistheclassicmnisthandwritingrecognitionimagedata.Downloadlink:thisDirectorytree├──__init__.py├──__pycache__│└──base.cpython-37.pyc├──base.py├──base.pyc├──data│├──t1
- [Tensorflow][原创]tensorflow保存PB模型的几种方法总结
未来自主研究中心
第一种方法:(官方不推荐)(1)引入库fromtensorflow.examples.tutorials.mnistimportinput_data(2)一般在seession初始化全局变量下写这句代码constant_graph=graph_util.convert_variables_to_constants(sess,sess.graph_def,['output_node_name'])其
- Internet Resources 6
韫左寻
2.制定一份资源清单。对于互联网范围的研究,谷歌是杰出的。尽管如此,有时候你的研究范围会更窄,重点也会更集中。在这种情况下,了解一些与主题相关的特定网站是有帮助的。这是一个很好的入门列表,按一般主题排列。对于有争议问题的各种观点的网站:http://www.townhall.com/columnistshttp://www.nytimes.com/pages/opinion/columnshttp
- onnx基础
whyte王
python
初次编辑时间:2024/2/7;最后编辑时间:2024/2/12定义:ONNX(OpenNeuralNetworkExchange)是一种开放式的文件格式,用于存储训练好的机器学习模型。它使得不同的人工智能框架(如PyTorch、MXNet、Tensorflow)可以采用相同格式存储模型数据并交互。Basic当我们加载了一个ONNX之后,我们获得的就是一个ModelProto,它包含了一些版本信息
- 基于卷积神经网络模型的手写数字识别
Jc.MJ
课程设计Pythoncnn人工智能神经网络深度学习
基于卷积神经网络模型的手写数字识别一.前言二.设计目的及任务描述2.1设计目的2.2设计任务三.神经网络模型3.1卷积神经网络模型方案3.2卷积神经网络模型训练过程3.3卷积神经网络模型测试四.程序设计一.前言手写数字识别要求利用MNIST数据集里的70000张手写体数字的图像,建立神经网络模型,进行0到9的分类,并能够对其他来源的图片进行识别,识别准确率大于97%。图片示例如下。图1-1mnis
- 基于全连接神经网络模型的手写数字识别
Jc.MJ
课程设计Python神经网络人工智能深度学习
基于全连接神经网络模型的手写数字识别一.前言二.设计目的及任务描述2.1设计目的2.2设计任务三.神经网络模型3.1全连接神经网络模型方案3.2全连接神经网络模型训练过程3.3全连接神经网络模型测试四.程序设计一.前言手写数字识别要求利用MNIST数据集里的70000张手写体数字的图像,建立神经网络模型,进行0到9的分类,并能够对其他来源的图片进行识别,识别准确率大于97%。图片示例如下。图1.1
- (零)我还没想好标题 = ='''
半亩半亩
1.实验简介从底层实现BP神经网络,实现对0-9数字手写体的训练与分类2.实验数据Mnist数据集Mnist数据集来自美国国家标准与技术研究所:NationalInstituteofStandardsandTechnology(NIST)训练集(trainingset)和测试集(testset)均是由来自250个不同人手写的数字构成,其中50%是高中学生,50%来自人口普查局(theCensusB
- Pytorch CGAN实现MNIST手写数字数据集
晚风何处来
pytorch人工智能机器学习深度学习gan
简介生成对抗网络(GenerativeAdversarialNetworks,简称GAN)是一种深度学习模型,通过生成器和判别器的对抗训练,从随机噪声中生成逼真的数据。在本博客中,我们将使用PyTorch框架实现一个条件生成对抗网络(ConditionalGAN,简称CGAN),并利用MNIST数据集进行手写数字的生成。项目概述在这个项目中,我们将实现一个生成器(Generator)和一个判别器(
- 【深度学习】: MNIST手写数字识别
X.AI666
深度学习深度学习人工智能机器学习
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,可接实验指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例2:构建自己的多层感知机:MNIST手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1数据集简介MNIS
- PyTorch中torchvision库的详细介绍
科学禅道
PyTorchpytorch人工智能python
torchvision是PyTorch生态系统中的一个关键库,专门为计算机视觉任务设计和优化。它提供了以下几个核心功能:数据集:内置了多种广泛使用的图像和视频数据集,如MNIST、CIFAR10/100、Fashion-MNIST、ImageNet、COCO等,并且它们以torch.utils.data.Dataset的形式实现,方便与PyTorch数据加载器(DataLoader)集成。数据预处
- MNIST数据集介绍及基于Pytorch下载数据集
高斯小哥
PyTorchpytorch人工智能python
MNIST数据集介绍及基于Pytorch下载数据集文章目录引言MNIST数据集介绍基于Pytorch下载MNIST数据集并可视化使用MNIST数据集进行图像分类任务MNIST数据集的局限性分析小结结尾引言在深度学习的领域中,MNIST数据集的重要地位不容忽视。作为入门级的计算机视觉数据集,它为研究者提供了一个宝贵的资源,帮助无数人开启了人工智能的探索之旅。今天,我们将深入挖掘MNIST数据集的魅力
- 深度学习手写字符识别:训练模型
DogDaoDao
深度学习深度学习人工智能手写字符识别PyTorchPycharm模型训练模型推理
说明本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。第一个深度学习实例手写字符识别深度学习环境配置可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。Windows11搭建GPU版本PyTorch环境详细过程数据集手写字符识别用到的数据集是MNIST数据集(MixedNationalInstituteofStandardsandTechnologydatabas
- 使用sklearn-SGDClassifier分类mnist数据集中‘5‘,并使用交叉验证评估模型
脑子不好真君
机器学习sklearn分类mnist
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportfetch_openmlfromsklearn.linear_modelimportSGDClassifierfromsklearn.model_selectionimportcross_val_scoremnist=fetch_openml('mnist_78
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro