在使用faster RCNN进行目标检测的时候发现不同类别的框不在同一张图上。所以进行一下的修改。
修改tools/demo.py
首先增加一个color map,使每个类别都有不同的颜色框。
COLORMAP = {
'aeroplane': 'k', 'bicycle': 'y', 'bird': 'crimson', 'boat': 'coral', 'bottle': 'aqua', 'bus': 'm', 'car': 'c', 'cat': 'brown', 'chair': 'grey', 'cow': 'b', 'diningtable': 'teal', 'dog': 'navy', 'horse': 'wheat', 'motorbike': 'g', 'person': 'r', 'pottedplant': 'peru', 'sheep': 'skyblue', 'sofa': 'sienna', 'train': 'yellow', 'tvmonitor': 'olive'}
将不同类别的框放在同一张图上:
def vis_detections(ax, im, image_name, class_name, dets, thresh=0.5):
"""
将ax放入参数
"""
inds = np.where(dets[:, -1] >= thresh)[0]
if len(inds) == 0:
return
for i in inds:
bbox = dets[i, :4]
score = dets[i, -1]
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor=COLORMAP[class_name], linewidth=3.5)
)
#edgecolor使用与类别名对应的colormap中的颜色
ax.text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor='blue', alpha=0.5),
fontsize=14, color='white')
ax.set_title(('{} detections with '
'p({} | box) >= {:.1f}').format(class_name, class_name,
thresh),
fontsize=14)
# plt.axis('off')
# plt.tight_layout()
# plt.draw()
def demo(sess, net, image_name):
"""Detect object classes in an image using pre-computed object proposals."""
dataset_dir = './dataset' #dataset路径
# Load the demo image
im_file = os.path.join(dataset_dir, image_name+'.png')
im = cv2.imread(im_file)
# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
scores, boxes = im_detect(sess, net, im)
timer.toc()
print('Detection took {:.3f}s for {:d} object proposals'.format(timer.total_time, boxes.shape[0]))
# Visualize detections for each class
CONF_THRESH = 0.8
NMS_THRESH = 0.3
im = im[:, :, (2, 1, 0)]
fig, ax = plt.subplots(figsize=(12, 12))
ax.imshow(im, aspect='equal')
# iou_score=[]
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
vis_detections(ax, im,image_name, cls, dets, thresh=CONF_THRESH)
plt.axis('off')
plt.tight_layout()
plt.draw()
#Save images
save_dir = './result'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if SAVE_VIS_IMAGES:
save_path = os.path.join(save_dir, image_name+ '.png')
plt.savefig(save_path)
参考了以下这篇:
https://blog.csdn.net/weixin_42111393/article/details/82940681