多线程爬取网站案例

此案例是爬取糗事百科的案例,以下是代码部分

from lxml import etree

from queue import Queue
from threading import Thread,Lock
import time
import requests
import json


#是否退出采集线程True,退出,False不退出
crawl_exit = False
parse_exit = False
class CrawlThread(Thread):
"""采集线程"""
def __init__(self,thread_name,page_queue,data_queue):
super(CrawlThread,self).__init__()
self.thread_name = thread_name
self.page_queue = page_queue
self.data_queue = data_queue
self.headers = {"User-Agent":"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36"}


def run(self):


while not crawl_exit:
try:
page = self.page_queue.get(block=False)
url = "https://www.qiushibaike.com/8hr/page/"+str(page)+"/"
print("%s开始采集%s页" % (self.thread_name,url))
response = requests.get(url,headers=self.headers)
#把请求回来的数据放入
self.data_queue.put(response.text)
time.sleep(2)
except Exception as e:
# print(e)
# print(self.thread_name)
pass


class ParseThread(Thread):
"""解析线程"""
def __init__(self,thread_name,filename,data_queue,lock):
super(ParseThread,self).__init__()
self.thread_name = thread_name
self.filename = filename
self.data_queue = data_queue
self.lock = lock




def handle_data(self,html):
# xpath获取数据
html = etree.HTML(html)
# 把数据加入列表
items = []
# 得到所以的节点
node_list = html.xpath('//div[contains(@id,"qiushi_tag")]')
for node in node_list:
# 字典
item = {}
items.append(item)  # 可以
# 遍历每个节点,从节点取出用户头像,和用户,段子,点赞和评论数
user_image = node.xpath('./div/a/img/@src')
# 用户名
user_name = node.xpath('./div/a/h2/text()')
# 段子
content = node.xpath('./a/div/span/text()')
# 点赞
dianzhan = node.xpath('./div[@class="stats"]/span/i/text()')
# 评论
commont = node.xpath('./div[@class="stats"]/span/a/i/text()')


if len(user_image) > 0:
iamge_url = user_image[0]
item["iamge_url"] = iamge_url


# print(iamge_url)


if len(user_name) > 0:
user_name = user_name[0]
item["user_name"] = user_name
# print(user_name)


if len(content) > 0:
content = "".join(content)
item["content"] = content
# print(content)


if len(dianzhan) > 0:
dianzhan = dianzhan[0]
# print(dianzhan)
item["dianzhan"] = dianzhan


if len(commont) > 0:
commont = commont[0]
# print(commont)
item["commont"] = commont




with self.lock:
json.dump(items,self.filename,ensure_ascii=False)
print(items)
print(type(items))




def run(self):


while not parse_exit:
try:
#从队列获取采集采集线程请求回来的数据
html = self.data_queue.get(block=False)
print("%s开始解析" % (self.thread_name))
self.handle_data(html)
time.sleep(2)
except Exception as e:
# print(e)
# print(self.thread_name)
pass
def main():
global crawl_exit
global parse_exit


#锁,开和关
lock = Lock()




#装页码的队列1,2,3,4,...9,10
page_queue = Queue(10)
for page in range(1,11):
#添加页面
page_queue.put(page)






#用户装数据的队列
data_queue = Queue()
#线程名称
crawl_thread_names = ["采集线程1","采集线程2","采集线程3"]
# 用户装采集线程实例对象的
crawl_threads = []
#让主线程等待采集线程结束,用采集线程实例对象


for thread_name in crawl_thread_names:
#线程的实例对象
thead = CrawlThread(thread_name,page_queue,data_queue)
thead.start()#启动线程
crawl_threads.append(thead)


#保存数据到该文件
filename = open("糗事.json","w")


# 线程名称
parse_thread_names = ["解析线程1", "解析线程2", "解析线程3"]
# 用户装解析线程实例对象的
parse_threads = []
# 让主线程等待采集线程结束,用解析线程实例对象


for thread_name in parse_thread_names:
# 线程的实例对象
thead = ParseThread(thread_name, filename, data_queue,lock)
thead.start()  # 启动线程
parse_threads.append(thead)


#判断所以采集的是都已经采集
while not page_queue.empty():
#页面是否都被采集,如果没有都被采集,就做死循环
pass
# 采集线程停止,注意定义成全局变量,否则修改不起作用
crawl_exit = True


#彻底等待采集线程结束--可以去掉
for thread in crawl_threads:
thread.join()#让主线程等待子线程结束






# 判断所以数据是否解析完成
while not data_queue.empty():
# 数据是否都被解析,如果没有都被解析完成,就做死循环
pass
# 解析线程停止,注意定义成全局变量,否则修改不起作用
parse_exit = True


# 彻底等待采集线程结束--可以去掉
for thread in parse_threads:
thread.join()  # 让主线程等待子线程结束


with lock:
filename.close()


print("主线程结束。。。。")






if __name__ == "__main__":
main()

 

你可能感兴趣的:(多线程爬取网站案例)