数据分析--辛普森悖论

辛普森悖论

探究两种变量(比如新生录取率与性别)是否具有相关性的时候,会分别对之进行分组研究。然而,在分组比较中都占优势的一方,在总评中有时反而是失势的一方。
数据分析--辛普森悖论_第1张图片

原因解释:
(1) 两个分组的录取率相差很大,就是说法学院录取率9.2%很低,而商学院53.3%却很高,另一方面,两种性别的申请者分布比重却相反,女生偏爱申请商学院,故商学院女生申请比率占83.3%,相反男生偏爱申请法学院,因此法学院女生申请比率只占16.7%。结果在数量上来说,录取率低的法学院,因为女生申请为数少,所以不录取的女生相对很少。而录取率很高的商学院虽然录取了很多男生,但是申请者却不多。使得最后汇总的时候,女生在数量上反而占优势。
(2) 性别并非是录取率高低的唯一因素,甚至可能是毫无影响的,至于在法商学院中出现的比率差可能是属于随机事件,又或者是其他因素作用,譬如学生入学成绩却刚好出现这种录取比例,使人牵强地误认为这是由性别差异而造成的。
应对:为了避免辛普森悖论出现,就需要斟酌个别分组的权重,以一定的系数去消除以分组资料基数差异所造成的影响,同时必需了解该情境是否存在其他潜在要因而综合考虑。

工作中的典型案例:
某产品的用户中有10000人使用Android设备、5000人使用IOS设备,整体的付费转化率应该是5%。细分发现其中IOS设备的转化率仅为4%,而Android设备则是5.5%。“聪明”的数据分析师得出结论:IOS平台的用户付费转化率低下,建议放弃IOS平台的研发。

一般来说,IOS平板的付费转化率比Android平板高出很多,而IOS手机的转化率也相对更好。这种情况下,设备类型就是复杂变量,如果数据是根据设备类型得到,那么其他的数据就可能被完全忽略。
数据分析--辛普森悖论_第2张图片
数据分析--辛普森悖论_第3张图片

在实际转化例子中,就需要用如“ARPU”、“ARPPU”这样看似相似实际上有很大差异的指标来进行分割。
同样地,如果要更客观分析产品的运营情况,就需要设立更多角度去综合评判。还是拿上述的设备转化率为例,产品层考虑转化的前提会优先考虑分发量、用户量、运营思路、口碑等等。而往往为了实现最后的转化需要,需要更多前置目标做铺垫。
数据分析--辛普森悖论_第4张图片
数据分析--辛普森悖论_第5张图片

你可能感兴趣的:(数据分析知识,数据分析)