这次的大作业是非常有趣的,最后生成的词云非常好看,关于青春有你2的词云制作
环境:在AIstudio上paddlehub
代码很长,从作业里拷过来
第一步:创建字体,非常非常重要,很多人后面出问题就是因为这里
# #创建字体目录fonts
!cp simhei.ttf /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf/
# 创建系统字体文件路径
!mkdir .fonts
# 复制文件到该路径
!cp simhei.ttf .fonts/
!rm -rf .cache/matplotlib
#安装模型
!hub install porn_detection_lstm==1.1.0
!pip install --upgrade paddlehub
导入必要的库
import json
import re #正则匹配
import time #时间处理模块
import jieba #中文分词
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
from PIL import Image
from wordcloud import WordCloud #绘制词云模块
import paddlehub as hub
爬取评论,觉得爬虫很好玩,能得到很多的信息
#请求爱奇艺评论接口,返回response信息
def getMovieinfo(url):
'''
请求爱奇艺评论接口,返回response信息
参数 url: 评论的url
:return: response信息
'''
session = requests.Session()
headers = {
"User-Agent": "Mozilla/5.0",
"Accept": "application/json",
"Referer":"https://www.iqiyi.com/v_19ryhrq68c.html",
"Origin":"http://m.iqiyi.com",
"Host": "sns-comment.iqiyi.com",
"Connection": "keep-alive",
"Accept-Language": "en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7,zh-TW;q=0.6",
"Accept-Encoding": "gzip, deflate"
}
response = session.get(url,headers=headers)
if response.status_code == 200:
return response.text
return None
#解析json数据,获取评论
def saveMovieInfoToFile(lastId,arr):
'''
解析json数据,获取评论
参数 lastId:最后一条评论ID arr:存放文本的list
:return: 新的lastId
'''
#url = "http://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&\agent_version=9.11.5&business_type=17&content_id="
url='https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&authcookie=null&business_type=17&content_id=15068699100&page=&page_size=10&types=time&last_id='
url+=str(lastId)
responseTxt = getMovieinfo(url)
responseJson=json.loads(responseTxt)
comments=responseJson['data']['comments']
for val in comments:
# print(val.keys())
if 'content' in val.keys():
print(val['content'])
arr.append(val['content'])
lastId = str(val['id'])
return lastId
去除不需要的
#去除文本中特殊字符
def clear_special_char(content):
'''
正则处理特殊字符
参数 content:原文本
return: 清除后的文本
'''
# 添加自定义字典 add_words.txt
# jieba.load_userdict('')
s = re.sub(r"?(.+?)>| |\t|\r", "", content)
s =re.sub(r"\n", "", s)
s =re.sub(r"\*", "\\*", s)
s =re.sub("\u4e00-\u9fa5^a-z^A-Z^0-9", "", s)
s = re.sub( '[\001\002\003\004\005\006\007\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a]+', '', s)
s = re.sub('[a-zA-Z]', "", s)
s = re.sub('^\d+(\.\d+)?$', "", s)
s = re.sub(u'[\U00010000-\U0010ffff]', ' ',s)
s = re.sub(u'[\uD800-\uDBFF][\uDC00-\uDFFF]', ' ', s)
for ch in ',。;:“”、》《、|*&…!♥♡?√【】]๑[ノ❤“❄,≧▽≦ !ヾ↗~↖^ ~♀٩௰^ و˃͈ ̶ω˂௰ ˂Ő ∀Ő∀✔( ง _ • 。́ ) ง✨✊⭐”…':
s = s.replace(ch, ' ')
return s
定义分词
def fenci(text):
'''
利用jieba进行分词
参数 text:需要分词的句子或文本
return:分词结果
'''
jieba.load_userdict("add_word.txt")
seg=jieba.lcut(text,cut_all=False)
return seg
定义停用词
def stopwordslist(file_path):
'''
创建停用词表
参数 file_path:停用词文本路径
return:停用词list
'''
# f= open(file_path, 'r')
# my_data = [i.strip('\n') for i in f]
stopwords= [line.strip() for line in open(file_path,encoding='UTF-8').readlines()]
return stopwords
去除停用词
def movestopwords(sentence,stopwords,counts):
'''
去除停用词,统计词频
参数 file_path:停用词文本路径 stopwords:停用词list counts: 词频统计结果
return:None
'''
out=[]
for word in sentence:
if word not in stopwords:
if len(word) !=1:
counts[word]=counts.get(word,0)+1
return None
统计词频
def drawcounts(counts,num):
'''
绘制词频统计表
参数 counts: 词频统计结果 num:绘制topN
return:none
'''
x_aixs=[]
y_aixs=[]
c_order=sorted(counts.items(), key=lambda x:x[1],reverse=True)
for c in c_order[:num]:
x_aixs.append(c[0])
y_aixs.append(c[1])
matplotlib.rcParams['font.sans-serif']=['SimHei']
matplotlib.rcParams['axes.unicode_minus']=False
plt.bar(x_aixs, y_aixs)
plt.title('词频统计结果')
plt.show()
绘制词云
def drawcloud(word_f):
'''
根据词频绘制词云图
参数 word_f:统计出的词频结果
return:none
'''
cloud_mask=np.array(Image.open('cloud.png'))
#cloud_mask=np.array(Image.open('wang.jpg'))
st=set(['东西', '这是'])
wc=WordCloud(background_color='white',
mask=cloud_mask,
max_words=150,
font_path='simhei.ttf',
min_font_size=10,
max_font_size=100,
width=400,
relative_scaling=0.3,
stopwords=st)
wc.fit_words(word_f)
wc.to_file('pic1.png')
内容分析
def text_detection(text,file_path):
'''
使用hub对评论进行内容分析
return:分析结果
'''
porn_detection_lstm=hub.Module(name='porn_detection_lstm')
f=open('aqy.txt', 'r', encoding='utf-8')
for line in f:
if len(line.strip())==1:
continue
else:
test_text.append(line)
f.close()
input_dict={
'text':test_text}
results=porn_detection_lstm.detection(data=input_dict,use_gpu=True,batch_size=1)
for index, item in enumerate(results):
if item['porn_detection_key'] =='porn':
print(item['text'],':', item['porn_probs'])
#评论是多分页的,得多次请求爱奇艺的评论接口才能获取多页评论,有些评论含有表情、特殊字符之类的
#num 是页数,一页10条评论,假如爬取1000条评论,设置num=100
主函数
if __name__ == "__main__":
num=150
lastId='0'
arr=[]
with open('aqy.txt', 'a', encoding='utf-8') as f:
for i in range(num):
lastId=saveMovieInfoToFile(lastId, arr)
time.sleep(0.5)
for item in arr:
item=clear_special_char(item)
if item.strip()!='':
try:
f.write(item+'\n')
except e:
print('含有特殊字符')
print("共获取评论:", len(arr))
f=open('aqy.txt', 'r', encoding='utf-8')
counts={
}
for line in f:
words=fenci(line)
#stopwords=stopwordslist(r'./stopwords/Stop Words.txt')
stopwords=stopwordslist('Stop Words.txt')
movestopwords(words, stopwords, counts)
drawcounts(counts, 10)
drawcloud(counts)
f.close()
file_path='aqy.txt'
test_text=[]
text_detection(test_text, file_path)
#display(Image.open('pic.png'))
display(Image.open('pic1.png'))#显示生成的词云图像