- 如何计算一个7B的模型训练需要的参数量以及训练时需要的计算资源
yxx122345
算法
计算理论过程见:transformer中多头注意力机制的参数量是多少?1.模型参数量的计算7B参数模型的总参数量是70亿(7billion)。这些参数主要分布在以下几个部分:Transformer层:多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNetwork)嵌入层(EmbeddingLayer):词嵌入(TokenEmbeddings)位置编码(
- 注意力机制+多尺度卷积
一只小小的土拨鼠
解构前沿:文献精读深度学习python人工智能YOLO深度学习
多尺度卷积先提供丰富的特征信息,注意力机制再从中筛选出关键信息,这样结合起来,不仅可以进一步提高模型的识别精度和效率,显著提升模型性能,还可以增强模型的可解释性。MPARN:multi-scalepathattentionresidualnetworkforfaultdiagnosisofrotatingmachines方法:论文介绍了一种用于旋转机械故障诊断的多尺度卷积神经网络结构,称为多尺度路
- 在kali linux中配置hadoop伪分布式
we19a0sen
三数据分析分布式linuxhadoop
目录一.配置静态网络二.配置主机名与IP地址映射三.配置SSH免密登录四.配置Java和Hadoop环境五.配置Hadoop伪分布式六.启动与验证一.配置静态网络原因:Hadoop集群依赖稳定的网络通信,动态IP可能导致节点失联。静态IP确保节点始终通过固定地址通信。操作步骤:#修改网络配置文件sudovim/etc/network/interfaces#添加内容(根据实际网络修改):autoet
- PHPer看docker容器的管理详解
PHP开源社区
PHP架构dockerpythonmysqlphp
查询容器信息dockerinspcet查询信息,包括运行情况、存贮位置、配置参数、网络设置等。查询容器的运行状态dockerinspect-f{{.State.Status}}【容器】查询容器的IPdockerinspect-f{{.NetworkSettings.IPAddress}}【容器】查询容器日志信息Ωdockerlogs【容器】-f实时打印最新的日志dockerstats实时查看容器所
- 论文阅读:Deep Stacked Hierarchical Multi-patch Network for Image Deblurring
行走的歌
文献阅读图像处理计算机视觉机器学习深度学习图像去雨图像处理
这是一篇去模糊的文章,后来发现直接套用不合适,无法获取到相应的特征,遂作罢,简单记录一下。2019CVPR:DMPHN这篇文章是2019CVPR的一篇去模糊方向的文章,师兄分享的时候看了一下,后来也发现这个网络结构在很多workshop以及文章中都见过。文章:ArXiv代码:Github在去模糊领域,目前的多尺度和尺度循环模型存在一些问题:1)由粗到细方案中的去卷积/上采样操作导致运行时间昂贵;2
- 【ComfyUI专栏】ComfyUI引用Embedded和HyperNetwork超网络
雾岛心情
ComfyUIComfyUIAIGC
大家如果使用过WebUI,那么一定知道界面中存在的Embedding和HyperNetworks。在界面中我们直接点击相应的嵌入式和超网络就能直接使用。ComfyUI的界面设计不如WEBUI直观,但我们仍可通过Text-Encoder输入Embedding来实现Embedding的引入。在C站(Civitai)上,我们可以看到种类繁多的Embedding资源。这些文件通常体积较小,大多只有几十KB
- 深入解析Quantum-GABP:量子神经网络的实现与应用
m0_57781768
神经网络量子计算人工智能
深入解析Quantum-GABP:量子神经网络的实现与应用引言在现代科技飞速发展的今天,量子计算与神经网络的结合成为了研究热点。量子神经网络(QuantumNeuralNetworks,QNN)凭借其巨大的计算潜力和独特的量子特性,逐渐吸引了研究者的关注。其中,Quantum-GABP(量子广义反向传播算法)作为一种高效的量子神经网络训练算法,展现出极大的应用前景。本文将深入探讨Quantum-G
- 031-Linux 网络诊断工具 nmap:网络扫描与漏洞检测
程序员--青青
python网络开发语言gaussdb服务器
031-Linux网络诊断工具nmap:网络扫描与漏洞检测在网络安全管理和故障排除中,网络扫描是一个非常重要的过程。它能够帮助发现网络中可能存在的漏洞、未授权的服务或设备等问题。nmap(NetworkMapper)是Linux系统中常用的一个强大工具,专门用于网络扫描、端口检测、服务识别以及漏洞检测等任务。本文将介绍nmap的基本功能及其常用用法,帮助你更好地进行网络诊断和安全分析。1.nmap
- 量子神经网络(Quantum Neural Network):结合量子计算的 AI 新探索
盼达思文体科创
人工智能和深度学习量子计算人工智能神经网络
一、引言在当今科技飞速发展的时代,人工智能(AI)和量子计算成为了两个备受关注的领域。量子神经网络(QuantumNeuralNetwork,QNN)作为这两个领域的交叉点,正吸引着越来越多的研究兴趣。QNN试图将量子计算的强大能力与传统神经网络的学习能力相结合,为解决复杂的人工智能问题提供新的思路和方法。二、量子计算基础(一)量子比特(Qubit)量子比特是量子计算的基本信息单位,与传统的比特不
- 网络神经架构的概念及其实际应用
2301_81121233
网络爬山算法近邻算法霍夫曼树剪枝哈希算法柔性数组
###网络神经架构的概念**网络神经架构(NeuralNetworkArchitecture)**是指用于构建和组织人工神经网络(ArtificialNeuralNetworks,ANN)的结构和方法。这些架构通常由多个层次的节点(神经元)组成,通过模拟人脑神经元之间的连接和信息传递方式,来处理复杂的数据输入并生成相应的输出。网络神经架构通常由以下几个部分组成:1.**输入层(InputLayer
- 如何使用 Python 实现生成对抗网络
NoABug
python生成对抗网络tensorflow
如何使用Python实现生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种能够生成高质量、逼真图像的深度学习模型。GAN模型由两个神经网络组成:一个生成器和一个判别器。生成器的任务是以噪声为输入,生成看似真实的图像;而判别器则需要根据输入的图像,判断该图像是真实的还是由生成器生成的。下面我们将通过Python代码来实现一个简单的GAN模型。首先,我们
- GAN模型的Python应用——生成对抗网络
代码编织匠人
python生成对抗网络开发语言
GAN模型的Python应用——生成对抗网络生成对抗网络(GenerativeAdversarialNetwork,GAN)是深度学习中的一种重要模型,已经被广泛应用于图像、文本生成等领域。GAN模型由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。生成器用于生成假样本,判别器用于评估真实性。两个神经网络相互博弈,通过一次次迭代训练,最终生成器可以生成足以骗过
- 【前端入门】应该了解和知道的几个国内外前端开发资源网站
爱上大树的小猪
前端
与大家分享一下几个国内外前端开发资源网站国际资源MDNWebDocs(MozillaDeveloperNetwork)用途:MDN是Web技术领域最全面的文档库之一,涵盖了HTML、CSS、JavaScript以及浏览器API等。链接:https://developer.mozilla.orgW3Schools用途:适合初学者学习Web技术,提供从基础到进阶的教程,同时还有在线练习环境。链接:ht
- Transformer 架构深度剖析
时光旅人01号
人工智能技术科普transformer深度学习人工智能condaopencv计算机视觉
一、Transformer架构核心设计1.1整体架构Transformer由编码器(Encoder)和解码器(Decoder)堆叠而成,每个层包含:多头自注意力(Multi-HeadSelf-Attention)前馈网络(Feed-ForwardNetwork,FFN)残差连接(ResidualConnection)和层归一化(LayerNorm)关键特性:完全基于注意力机制,摒弃了循环和卷积结构
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 京准电钟分享:水利系统NTP网络时间服务器应用
北京华人开创公司
时钟系统北斗卫星授时NTP时间同步网络服务器运维时间同步时钟同步NTP服务器网络时间服务器
京准电钟分享:水利系统NTP网络时间服务器应用京准电钟分享:水利系统NTP网络时间服务器应用1.项目背景水利控制系统涵盖水文监测、闸门控制、泵站调度、数据采集与传输等多个子系统,设备分布广泛且需协同工作。系统内各设备(如PLC、RTU、SCADA服务器、传感器等)的时间一致性直接影响数据记录的准确性、事件报警的时序性以及故障分析的可靠性。为实现全系统高精度时间同步,需部署NTP(NetworkTi
- 京准电钟推荐:智能交通系统NTP时间同步服务设计方案
北京华人开创公司
时钟系统NTP时间同步卫星同步时钟ntp时钟同步时间同步网络授时网络校时
京准电钟推荐:智能交通系统NTP时间同步服务设计方案京准电钟推荐:智能交通系统NTP时间同步服务设计方案针对智能交通系统的NTP(NetworkTimeProtocol)时间同步方案设计,需确保交通设备(如信号灯、摄像头、传感器、服务器等)的时间高度一致,以提高系统协同效率和数据分析准确性。以下是完整的方案框架:一、需求分析同步精度核心设备(如信号控制机、边缘服务器)需达到**毫秒级(1-10ms
- Adaptive AUTOSAR之状态管理模块(STM)
weixin_42130902
AdaptiveAUTOSAR架构
1.STM简介状态管理(STM)负责根据从其他AUTOSAR自适应平台应用程序或自适应应用程序接收的信息确定其任何内部状态机的状态。STM使用提供的网络管理字段(NetworkHandle)控制(部分网络)的状态。STM与执行管理(EXM)交互,以请求功能组和机器状态,以输入由项目需求确定的特定状态。功能组状态可能还依赖于网络管理(NM)状态。STM通过ara::com服务提供对其内部状态的访问。
- Linux命令学习笔记之 network NetworkManager
kfepiza
OS操作系统WindowsLinux等#LinuxCentOSUbuntu等linux学习centos
networkNetworkManager前言CentOS7最小安装下的测试220511心得:启动network能打开网络,关闭network能关闭网络启动NetworkManager能打开网络,关闭不会关闭网络在两者都启动的情况下,单停network会断网,单停NetworkManager不会一些摘抄前言这两个东西在centOS7最小安装无勾选附加时就存在Ubuntu20.04中只有Networ
- 【科研绘图系列】R语言绘制网络相关图(cor network plot)
生信学习者1
SCI科研绘图系列r语言数据分析数据挖掘数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据下载导入数据数据预处理画图1画图2组合图形输出图片系统信息介绍【科研绘图系列】R语言绘制网络相关图(cornetworkplot)加载R包library(tidyverse)library(ggraph)library(igraph)library(patchwork)conflicted::
- 测试ospf多区域和分支对接
项目工程师余工
笔记网络工程华为网络
总结:1、完全stub区域,直接导入直连或静态不生效,必须要在stub区域network发布直接的网段才可以,(以前只知道stub区域不能导入其它系统的自治系统,原来导入直连和静态也不生效)2、NSSA区域没问题,效果和骨干一样,所有都能生效。3、最终效果全网贯通,并且可以访问公网9.9.9.9dicu[V200R003C00]sysnamer1snmp-agentlocal-engineid80
- 手把手教你学AUTOSAR(4.4)--AUTOSAR的Ethernet
小蘑菇二号
手把手教你学AUTOSAR网络
目录AUTOSAR中的Ethernet1.Ethernet协议简介2.Ethernet在汽车中的应用3.AUTOSAR中的Ethernet支持3.1网络管理(NetworkManagement
- MobileMamba(2024 CV)
刘若里
论文阅读学习笔记网络计算机视觉人工智能
论文标题MobileMamba:LightweightMulti-ReceptiveVisualMambaNetwork论文作者HaoyangHe,JiangningZhang,YuxuanCai,HongxuChen,XiaobinHu,ZhenyeGan,YabiaoWang,ChengjieWang,YunshengWu,LeiXie发表日期2024年11月01日GB引用>HaoyangHe
- PCDN边缘计算小白入门指南
神鸟云-Hu
边缘计算人工智能
一、PCDN边缘计算简介PCDN是一种基于P2P技术的边缘计算内容分发网络。它通过挖掘和利用边缘网络中的海量碎片化闲置资源,构建出低成本、高品质的内容分发网络服务。通过集成PCDNSDK(软件开发工具包),可以获得与CDN(ContentDeliveryNetwork,内容分发网络)相当或略高的分发质量,同时显著降低分发成本。PCDN适用于视频点播、直播、大文件下载等业务场景,旨在降低客户的分发成
- NAT 和 IP 直接通信的区别
曹天骄
tcp/ip服务器网络协议
1.NAT的工作原理NAT(NetworkAddressTranslation,网络地址转换)是一种网络技术,用于将私有网络中的IP地址映射到公共网络中的IP地址,或者在不同的网络之间转换IP地址。NAT的主要目的是解决IPv4地址不足的问题,同时提供一定程度的安全性和灵活性。NAT设备(如路由器或防火墙)会在数据包经过时修改其源IP地址或目标IP地址。常见的NAT类型包括:静态NAT:将私有IP
- FE,GE,POS口的概念
jacksong2021
FEGEPOS
FE,GE,POS口的概念FE接口(FastEthernet),就是快速以太网接口GE接口(GigabitEthernet),就是千M以太网接口POS(PacketOverSONET/SDH),用于更高速度的接口,通常用于广域网、城域网中。SONET(SynchronousOpticalNetwork)是ANSI定义的同步传输体制,是一种全球化的标准传输协议,采用光传输,传输速率组成一个序列,包括
- 基于异构特征融合与轻量级集成学习的软件漏洞挖掘方案设计与Python实现
rockmelodies
信息安全网络安全机器学习集成学习python机器学习人工智能
标题:基于异构特征融合与轻量级集成学习的软件漏洞挖掘方案设计与Python实现一、方案设计原理异构特征工程静态特征:基于AST的代码属性图(CPG)解析(使用Joern+NetworkX)动态特征:内存访问模式分析(通过QEMU模拟执行)上下文特征:CWE漏洞模式匹配(集成Semgrep规则引擎)轻量级模型架构
- 【考研计算机网络】课堂笔记4 第四章 网络层_Network Layer
刘鑫磊up
#操作系统计算机网络计算机网络
文章目录:一:网络层的功能1.异构网络互联2.路由与转发功能3.拥塞控制二:数据交换方式三:路由算法1.静态路由与动态路由1.1静态路由算法(又称非自适应路由算法)1.2动态路由算法(又称自适应路由算法)2.动态路由算法2.1距离-向量路由算法2.2链路状态路由算法2.3层次路由四:IPV41.概述2.IPV4分组2.1IPV4分组格式2.2IP数据报分片2.3网络层转发分组的流程3IPV4地址与
- PINN物理信息网络 | 利用物理信息神经网络进行流体动力学建模
算法如诗
物理信息网络(PINN)神经网络机器学习人工智能流体动力学建模PINN物理信息网络
背景物理信息神经网络(Physics-InformedNeuralNetworks,PINN)是一种结合了神经网络和物理方程的方法,用于建模和求解物理问题。传统的基于物理方程的数值方法在处理复杂的非线性偏微分方程时可能面临数值稳定性、高计算复杂度和网格依赖性等问题。而PINN作为一种数据驱动的方法,通过使用神经网络来近似物理方程,能够有效地解决这些问题。在流体动力学建模中,PINN可以应用于求解N
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f