1000! mod 10^250

1000! mod 10^250 
===============
the answer is 2
================
Hi I'm trying to solve the above problem that was asked recently. Couldn't mod it because it was closed. 

So far I've found the 1000! has 249 zeros 
because there are 
200 multiples of 5 that will generate 200 zeros 
40 multiples of 25 that will generate an Additional 40 zeros 
8 multiples of 125 that will generate an Additional 8 zeros 
1 multiple of 625 that will generate an addition zero. 

So what I'm trying to find is what the last significant digit is. 
Now. 
1x2x3x4x1x6x7x8x9 
generates a value that ends in 6 
The same will apply to every other sequence ending in 
1,2,3,4,6,7,8,9 
of which there are 100 
6^100 conveniently also ends in 6 as does any power of 6. 

Multiplying of 10, 20,30,40, 60,70,80,90 will does the same thing for every set of 100 
as will 
the multiplying of 100, 200,300,400, 600,700,800,900 will does the same thing as well. 

However, I can't figure out how to deal with the multiples of 5 now that are not multiples of 10 and the multipliers that are multiples of 50 that aren't 100s 
and the 500. 

Any suggestions ?
Update:  Actually, I just realised that I can bind every 5 to a 2; every 50 to a 20, and the 500 to a 200 
Leaving me with 111 sets of (1.3.4.6.7.8.9) 
which ends in an 8 
so 8^111 ends in a 2; because powers of 8 mod 10 repeat in sets of 4. 

So I'm guessing that the final answer is 2 
Anybody know if this would be correct ? 
Thanks.
Update 2:  Thanks for the "can't bind the 5s" Forgot that that's kind of why they were left out to begin with. 
The 111 was from 
100 sequences of 1,2,3,...,9; 10 sequences of 10,20,30...,90; 1 sequence of 100,200,300... 
thanks for the Wolfram link - that's awesome.
Update 3:  Primes seem to have been the way to go. 
1000! can be written as 
2^994.3^498.5^249.7^164.11^98.13^81.17^... etc 
which can written 
2^249.5^249.2^745.3^498. etc 

1000! can then also be thought of as Product(all non multiples of 5).5^160.Product(allnon multiples of 5 to 200).(5^2)^(40-8).Product(all non multiples of 5 to 40).(5^3)^(8-1)(Pupto8).(5^4)^1(1) 
which is 5^249.(product sequences with all least significant digits 1,2,3,4,6,7,8,9).product_sequence(1.2.3.... 
which is 5^249(sequence ending in 6)(sequence ending in 4) 
which is 5^249(sequence ending in 4) 

I already know that the (sequence ending in 4) has 2^249.2^745 as a factor. 
Taking out 2^249 from that (sequence ending in 4) will remove the issue with the 5s 
multiples of 2 end in the sequence 2,4,8,6, 2,4,8,6 etc. 
stepping back 249 times along this sequence starting at 4, we arrive at 2 
So I think that is a reasonable method and answer ? 
Thanks for all the help.

========================================================================================
  Best Answer:    Yes, it ends in 249 0's and the last significant digits are 10970027753472. I have a program that does the calculation. Results are in the image below, or athttp://i276.photobucket.com/albums/kk2/f... if YahooAnswers maintenance is preventing you from seeing it. 
1000! mod 10^250_第1张图片


I'm not quite sure of the details of what you did. You can't ignore the multiples of 5 just because they get matched up with a 2. E.g., take 30 and 40. Match up the 5's and you are left with factors of 6 and 8, which are different, and you have to account for those quotients after the 5's are out. You are looking at sets of 1x3x4x6x7x8x9 but when you take the 2 out to bind to a 5, what's left? 32x35 = 1120. 42*45 = 1890. So in one case you still have a 2 to deal with, in the other it's a 9.  

1*2*3*4*6*7*8*9*(5*10) = 72,576 x 50 = something ending in 6 x 50 = 3628800. Last s.d. is an 8.  
The product from 11 to 20 = something ending in 6 x (15x20) = something ending in 6 x 300. Last s.d. is again an 8  
But the product from, say, 31 to 40 = something ending in 6 x (35*40) = 6 x 1400 and it ends in a 4, not an 8.  

So you've matched up all the 5's, but you need to be concerned about what's left when you do that. I'm not quite sure if you've done that. 2 is the right answer, but I'm not sure that it's because 8^111 ends in 2. Maybe it is, but I don't see where you got 111. Is that from factoring out the 5's somehow?  

I think you have either figured out the right answer, or are on the right track. It looks like you may have a little more work to do to solve this analytically.  

Here's some add'l info, a table of the last 3 s.d.'s of n!  

100 864  
200 472  
300 496  
400 008  
500 864  
600 496  
700 384  
800 496  
900 432  
1000 472  

You can see how irregular it is. It's easy to count the factors of 5, but not so easy to determine that last digit of what you are left with after you factor them out.  

Another approach is to count all the prime factors of 1000!, toss out the 5's and 249 of the 2's, find p^e mod 1000, and then take the cumulative product mod 1000. Once again you get 472 as the last 3 s.d.'s. You get:  

P e p^e mod 1000 *** prod mod 1000  
2 745 832 832  
3 498 889 648  
5 0 1 648  
7 164 401 848  
11 98 281 288  
13 81 613 544  
17 61 617 648  
19 54 321 8  
23 44 241 928  
29 35 549 472  
31 33 191 152  
37 27 533 16  
41 24 561 976  
43 23 507 832  
47 21 847 704  
53 18 689 56  
59 16 41 296  
61 16 961 456  
67 14 329 24  
71 14 881 144  
73 13 33 752  
79 12 441 632  
83 12 161 752  
89 11 489 728  
97 10 49 672  
101 9 901 472  
103 9 583 176  
107 9 507 232  
109 9 389 248  
113 8 321 608  
127 7 503 824  
131 7 811 264  
137 7 433 312  
139 7 379 248  
149 6 601 48  
151 6 401 248  
157 6 449 352  
163 6 9 168  
167 5 607 976  
173 5 93 768  
179 5 899 432  
181 5 901 232  
191 5 951 632  
193 5 193 976  
197 5 757 832  
199 5 999 168  
211 4 441 88  
223 4 441 808  
227 4 841 528  
229 4 481 968  
233 4 521 328  
239 4 641 248  
241 4 561 128  
251 3 251 128  
257 3 593 904  
263 3 447 88  
269 3 109 592  
271 3 511 512  
277 3 933 696  
281 3 41 536  
283 3 187 232  
293 3 757 624  
307 3 443 432  
311 3 231 792  
313 3 297 224  
317 3 13 912  
331 3 691 192  
337 2 569 248  
347 2 409 432  
349 2 801 32  
353 2 609 488  
359 2 881 928  
367 2 689 392  
373 2 129 568  
379 2 641 88  
383 2 689 632  
389 2 321 872  
397 2 609 48  
401 2 801 448  
409 2 281 888  
419 2 561 168  
421 2 241 488  
431 2 761 368  
433 2 489 952  
439 2 721 392  
443 2 249 608  
449 2 601 408  
457 2 849 392  
461 2 521 232  
463 2 369 608  
467 2 89 112  
479 2 441 392  
487 2 169 248  
491 2 81 88  
499 2 1 88  
503 1 503 264  
509 1 509 376  
521 1 521 896  
523 1 523 608  
541 1 541 928  
547 1 547 616  
557 1 557 112  
563 1 563 56  
569 1 569 864  
571 1 571 344  
577 1 577 488  
587 1 587 456  
593 1 593 408  
599 1 599 392  
601 1 601 592  
607 1 607 344  
613 1 613 872  
617 1 617 24  
619 1 619 856  
631 1 631 136  
641 1 641 176  
643 1 643 168  
647 1 647 696  
653 1 653 488  
659 1 659 592  
661 1 661 312  
673 1 673 976  
677 1 677 752  
683 1 683 616  
691 1 691 656  
701 1 701 856  
709 1 709 904  
719 1 719 976  
727 1 727 552  
733 1 733 616  
739 1 739 224  
743 1 743 432  
751 1 751 432  
757 1 757 24  
761 1 761 264  
769 1 769 16  
773 1 773 368  
787 1 787 616  
797 1 797 952  
809 1 809 168  
811 1 811 248  
821 1 821 608  
823 1 823 384  
827 1 827 568  
829 1 829 872  
839 1 839 608  
853 1 853 624  
857 1 857 768  
859 1 859 712  
863 1 863 456  
877 1 877 912  
881 1 881 472  
883 1 883 776  
887 1 887 312  
907 1 907 984  
911 1 911 424  
919 1 919 656  
929 1 929 424  
937 1 937 288  
941 1 941 8  
947 1 947 576  
953 1 953 928  
967 1 967 376  
971 1 971 96  
977 1 977 792  
983 1 983 536  
991 1 991 176  
997 1 997 472

Source(s): http://www.wolframalpha.com/input/?i=100... gives you the answer too. Keep asking for "more digits."

来源: https://answers.yahoo.com/question/index?qid=20131127134508AAoHYGh&guccounter=1

转载于:https://www.cnblogs.com/jins-note/p/9786378.html

你可能感兴趣的:(1000! mod 10^250)