- Acwing-基础算法课笔记之搜索与图论(spfa算法)
不会敲代码的狗
Acwing基础算法课笔记图论算法笔记
Acwing-基础算法课笔记之搜索与图论(spfa算法)一、spfa算法1、概述2、模拟过程3、spfa算法模板(队列优化的Bellman-Ford算法)4、spfa算法模板(判断图中是否存在负环)一、spfa算法1、概述单源最短路径算法,处理负权边的spfa算法,一般时间复杂度为O(m)O(m)O(m),最坏为O(nm)O(nm)O(nm)。1、建立一个队列,初始化队列里只有起始点(源点);2、
- 深入理解 C++ 算法之 SPFA
小白布莱克
c++算法开发语言
在图论算法的世界里,单源最短路径问题是一个经典且重要的研究方向。SPFA(ShortestPathFasterAlgorithm)算法作为求解单源最短路径问题的一种高效算法,在C++编程中有着广泛的应用。本文将深入探讨SPFA算法的原理、实现步骤以及在C++中的代码实现。SPFA算法原理SPFA算法本质上是对Bellman-Ford算法的一种优化。Bellman-Ford算法通过对所有边进行多次松
- 洛谷[P4779]单源最短路径(标准版)
Shadow_of_the_sun
c++
前言SPFASPFA算法由于它上限O(NM)=O(VE)O(NM)=O(VE)的时间复杂度,被卡掉的几率很大.在算法竞赛中,我们需要一个更稳定的算法:dijkstradijkstra.什么是dijkstradijkstra?dijkstradijkstra是一种单源最短路径算法,时间复杂度上限为O(n^2)O(n2)(朴素),在实际应用中较为稳定;;加上堆优化之后更是具有O((n+m)\log_{
- 信息学奥赛一本通 2101:【23CSPJ普及组】旅游巴士(bus) | 洛谷 P9751 [CSP-J 2023] 旅游巴士
君义_noip
CSP/NOIP真题解答信息学奥赛一本通题解洛谷题解算法动态规划信息学奥赛
【题目链接】ybt2101:【23CSPJ普及组】旅游巴士(bus)洛谷P9751[CSP-J2023]旅游巴士【题目考点】1.图论:求最短路Dijkstra,SPFA2.动态规划3.二分答案4.图论:广搜BFS【解题思路】解法1:Dijkstra堆优化每个地点是一个顶点,每条道路是一条边,道路只能单向通行,该图是有向图。通过每条边用时都是1单位时间,那么该图是无权图。每条道路都有开放时刻a,也就
- 【模板】Spfa判负环
user_qym
最短路C++题解
【模板】Spfa判负环给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你判断图中是否存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出格式如果图中存在负权回路,则输出“Yes”,否则输出“No”。数据范围1≤n≤2000,1≤m≤10000,图中涉及边长绝对值均不超过10000。输入样例:331
- spfa判负环
Tom Marvolo
算法基础·搜索与图论·最短路
大雪菜的课(笔记)搜索与图论(二)1.最短路(5).spfa判负环模板(spfa判断图中是否存在负环——模板题AcWing852.spfa判断负环)时间复杂度是O(nm)O(nm),nn表示点数,mm表示边数intn;//总点数inth[N],w[N],e[N],ne[N],idx;//邻接表存储所有边intdist[N],cnt[N];//dist[x]存储1号点到x的最短距离,cnt[x]存储
- 图论 —— SPFA 模板
努力的老周
OI笔记算法模板笔记图论算法数据结构SPFA算法
概述本文使用优先队列优化的SPFA算法。时间复杂度一般为O(m)O(m)O(m),最坏为O
- C++实现SPFA判断负环算法
大王算法
C++入门及项目实战宝典数据结构和算法实战宝典SPFA判断负环算法
1、SPFA判断负环算法要求给定每条街的拥挤度p(x),街a到街b的时间就是(p(b)-p(a))**3,求第一个点到第k个点的最短路,若无法到达或结果小于3,输出’?’。2、算法思路显然,题目可能存在负环,则所有负环上的点全应该输出’?’,因为它们必定小于3,所以,spfa判断负环,并进行标记,即可解决。3、代码实现#include#include#include#include#include
- 图论——spfa判负环
0x7F7F7F7F
图论算法
负环图GGG中存在一个回路,该回路边权之和为负数,称之为负环。spfa求负环方法1:统计每个点入队次数,如果某个点入队n次,说明存在负环。证明:一个点入队n次,即被更新了n次。一个点每次被更新时所对应最短路的边数一定是递增的,也正因此该点被更新n次那么该点对应的的最短路长度一定大于等于n,即路径上点的个数至少为n+1。根据抽屉原理,路径中至少有一个顶点出现两次,也就是路径中存在环路。而算法保证只有
- 图论——最短路
IGP9
算法图论
图片来自Acwing平台本文主要内容:朴素Dijkstra算法堆优化Dijkstra算法Bellman-Ford算法SPFA算法Floyd算法1朴素Dijkstra算法主要功能:求没有负权边的图的单源最短路时间复杂度:o(n2)基本思路:假设存在一个集合s,集合中的所有节点的最短路距离已经被求解,并且存入到了dist[]中每次挑选集合外dist值最小的节点t加入集合s,用该点更新其他所以节点循环n
- 备战CSP(1):复习图论之最短路算法SPFA
鹤上听雷
算法图论
接下来,我们将用这道题目来复习最短路算法,dijk和spfa。LuoguP3371【模板】单源最短路径(弱化版)题目背景本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步P4779。题目描述如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。输入格式第一行包含三个整数n,m,sn,m,sn,m,s,分别表示点的个数、有向边的个数、出发点的编号。接下来mm
- 洛谷P2865 [USACO06NOV] Roadblocks G【C++解法】【次短路问题】
#Dong#
c++算法数据结构图论
/*求次短路问题【spfa解法】本题思路:1.用spfa做,用d1记录从1到n所有点距离点1的最短距离,用d2记录从n到1所有点距离点n的最短距离那么此时d1[n]即为1到n点的最短距离2.遍历每个顶点x,找到它们所指向的点y,利用d1[x](x距离1的最短距离)+d2[y](y距·离n的最短距离)+w[i](x和y的边的权值)因为次短路一定严格大于最短路,而且又是除了最短路以外最小的那个,所以利
- P2865 [USACO06NOV] Roadblocks G(洛谷)(次短路)
叶子清不青
算法
开一个二维数组dis[N][2]分别记录最短路和次短路即可。dijkstra和spfa均可,推荐spfa。//dijkstra#includeusingnamespacestd;constintN=1e5+5;typedeflonglongll;typedefpairPII;intn,m,k;intT;priority_queue,greater>q;structnode{inte,w;};vec
- python带空格的路径_使用带空格的路径调用脚本
weixin_39729784
python带空格的路径
我有一个GUI,并且正在使用一个按钮来调用python脚本。我pythonos.path.abspath(os.path.dirname(__file__))用来获取GUI脚本的目录,并进一步使用它来调用该目录的子文件夹中的脚本。我使用以下方法获取GUI的路径:sPfad=os.path.abspath(os.path.dirname(__file__))print(sPfad)T:\kst597
- DAY60-图论-Bellman_ford
No.Ada
LeetCode刷题手册图论
Bellman_ford队列优化算法(又名SPFA)publicstaticvoidmain(String[]args){Scannerscan=newScanner(System.in);intn=scan.nextInt();intm=scan.nextInt();//初始化List>edges=newArrayListtemp=newArrayListqueue=newLinkedListt
- 2022-01-14每日刷题打卡
你好_Ä
图论算法
2022-01-14每日刷题打卡AcWing——y总算法课851.spfa求最短路-AcWing题库给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出
- 刷题Day64|Floyd 算法精讲:97. 小明逛公园、A * 算法精讲:127. 骑士的攻击
风啊雨
算法
Floyd算法精讲解决多源最短路问题,即求多个起点到多个终点的多条最短路径。dijkstra朴素版、dijkstra堆优化、Bellman算法、Bellman队列优化(SPFA)都是单源最短路,即只能有一个起点。Floyd算法对边的权值正负没有要求,都可以处理。思路:核心思想是动态规划。分两种情况:(1)节点i到节点j的最短路径经过节点k:grid[i][j][k]=grid[i][k][k-1]
- 代码随想录算法训练营Day61 || 图论part 10
傲世尊
图论
Bellman_ford队列优化算法:又叫做SPFA,在做松弛操作时,只更新以目前操作节点为出发点能到达的节点的minDist,避免多余操作。判断负权回路:如果有负权回路,进行第n次松弛的时候,minDist数组会有变化。最多经过k个城市,那么就对所有边进行k+1次松弛即可。
- Dijkstra算法C++
江淮子弟
算法刷刷刷算法c++图论数据结构贪心算法
系列文章目录Dijkstra算法Ballman_ford算法Spfa算法Floyd算法文章目录系列文章目录一、朴素版本二、堆优化版本总结一、朴素版本时间复杂度:$O(n^2)$数据量比较密集时:数据存储用邻接矩阵g[][]较大值MAX选用0x3f3f3f3f:32bit中通常int最大值为0x7fffffff,但是此处需要对MAX进行加法,0x7fffffff+3为负数,显然不符合最短路径算法中的
- 算法基础系列第三章——图论之最短路径问题
杨枝
算法基础图论算法dijkstrabellman–fordalgorithm
详解蓝桥图论之最短路径问题关于图论知识铺垫图的定义邻接矩阵邻接表最短路算法总大纲dijkstra算法朴素版dijsktra算法(适用于稠密图)例题描述参考代码(C++版本)算法模板细节落实堆优化版dijkstra算法(适用于稀疏图)例题描述参考实现代码(C++版本)算法模板细节落实bellman-ford算法例题描述——有边数限制的最短路参考代码(C++版本)算法模板细节落实SPFA算法例题描述参
- 【备战蓝桥杯】 算法·每日一题(详解+多解)-- day11
苏州程序大白
365天大战算法算法蓝桥杯图论数据结构C++
【备战蓝桥杯】算法·每日一题(详解+多解)--day11✨博主介绍前言Dijkstra算法流程网络延迟时间解题思路Bellman-Ford算法流程K站内最便宜的航班解题思路SPFA算法K站内最便宜的航班解题思路具有最大概率的路径解题思路Floyd算法找到阈值距离内邻居数量最少的城市解题思路Johnson全源最短路径算法正确性证明解题思路点击直接资料领取✨博主介绍作者主页:苏州程序大白作者简介:CS
- 备战蓝桥杯—有边数限制的最短路 (bellman_ford+)——[AcWing]有边数限制的最短路
Joanh_Lan
备战蓝桥杯蓝桥杯图论算法acm竞赛
因为近期在学图,所以顺带的写一篇最短路的备战蓝桥杯文章。最短路(单源)所有边权都为正数有两种算法:1.朴素DijkstraO(n^2)2.堆优化的DijkstraO(mlogn)存在负权边有两种算法:1.Bellman-FordO(nm)2.SPFA一般O(m),最坏O(nm)今天,我来介绍一下Bellman-Ford(存在负权+有边数限制)存在负权且有边数限制——》Bellman-Ford(在我
- 课上题目代码
顾客言
c++图论最短路
dijkstra和spfa区别:dikstra是基于贪心的思想,每次选择最近的点去更新其它点,过后就不再访问。而在spfa算法中,只要有某个点的距离被更新了,就把它加到队列中,去更新其它点,所有每个点有被重复加入队列的可能。或者跟具体的说区别在于diikstra总是要找到dist最小的元素来作为父节点更新其他点,而不是直接取队头元素(当然如果是优先队列也是取队头元素):更新的顺序不同主要导致的差异
- 算法刷题day13
lijiachang030718
#算法刷题算法动态规划
目录引言一、蜗牛引言今天时间有点紧,只搞了一道题目,不过确实搞了三个小时,才搞完,主要是也有点晚了,也好累啊,不过也还是可以的,学了状态DP,把建图和spfa算法熟悉了一下,明天再接再厉。一、蜗牛标签:状态机DP思路1:这个因为还没学所以第一时间没有这个DP的概念就拿最短路做的,spfa算法过了两个数据(总共十个),然后其实没问题,就是图建的不太完善,建图是觉得每次传送结束都要回到x轴,现在觉得可
- 找负环(图论基础)
wa的一声哭了
图论SPFA图论springbootfastapidjangoflasknumpyspring
文章目录负环spfa找负环方法一方法二实际效果负环环内路径上的权值和为负。spfa找负环两种基本的方法统计每一个点的入队次数,如果一个点入队了n次,则说明存在负环统计当前每个点中的最短路中所包含的边数,如果当前某个点的最短路所包含的边数大于等于n,也说明存在负环实际上两种方法是等价的,都是判断是否路径包含n条边,nnn条边的话就有n+1n+1n+1个点用的更多的还是第二种方法。方法一cnt[x]:
- 最短路问题模版总结
Jared_devin
最短路问题Acwing算法c++图论数据结构宽度优先动态规划深度优先
目录思维导图Dijkstra(朴素)思路:代码如下:Dijkstra(堆优化)代码如下:Bellman-Ford思路:对于串联效应的解释:(也就是为什么需要备份数组)代码如下:SPFA思路:为什么和BF算法的判断不一样:代码如下:SPFA判负环思路:代码如下:Floyd编辑思路:代码如下:复习小结~~符号:n为点数,m为边数思维导图(来自y总)注:1.朴素Dijkstra适用于稠密图,堆优化Dij
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 【第二十二课】最短路:多源最短路floyd算法(acwing-852 spfa判断是否存在负环 / acwing-854 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录acwing-852代码如下一些解释acwing-854foyld算法思想代码如下一些解释acwing-852在spfa求最短路的算法基础上进行修改。代码如下#include#include#include#includeusingnamespacestd;constintN=2010,M=10010;intn,m;inth[N],e[M],ne[M],w[M],idx;intdist[N],
- 【第二十二课】最短路:bellman_ford / spfa算法 (acwing-851 / acwing-853 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录前言acwing-853bellman_ford算法的思想代码如下一些解释acwing-851spfa算法思想代码如下一些解释前言由于权重可以表示不同的度量,例如距离、时间、费用等,具体取决于问题的背景,因此会存在一些权值为负数的题目。也就是存在负权边的最短路问题。dijkstra算法由于每次都选择当前最短路径的节点进行扩展,并不能解决带有负权值的最短路问题。会存在如下图这样的问题根据dijk
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后