【机器学习】SVR支持向量机回归

回归和分类从某种意义上讲,本质上是一回事。SVM分类,就是找到一个平面,让两个分类集合的支持向量或者所有的数据(LSSVM)离分类平面最远;SVR回归,就是找到一个回归平面,让一个集合的所有数据到该平面的距离最近。
  我们来推导一下SVR。根据支持向量机二分类博客所述,数据集合归一化后,某个元素到回归平面的距离为r=d(x)−g(x)r=d(x)−g(x)。另外,由于数据不可能都在回归平面上,距离之和还是挺大,因此所有数据到回归平面的距离可以给定一个容忍值ε防止过拟合。该参数是经验参数,需要人工给定。如果数据元素到回归平面的距离小于ε,则代价为0。SVR的代价函数可以表示为:
————————————————
版权声明:本文为CSDN博主「artzers」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/lpsl1882/article/details/52411987

转载一波,防止忘记

你可能感兴趣的:(【机器学习】SVR支持向量机回归)