昨天的时候我们已经写过一版多线程的代码,很多同学对原理不是很清楚,那么我们今天先画个多线程执行时序图
来体现一下多线程程序的执行流程。
代码如下:
public class MyThread extends Thread{
/*
* 利用继承中的特点
* 将线程名称传递 进行设置
*/
public MyThread(String name){
super(name);
}
/*
* 重写run方法
* 定义线程要执行的代码
*/
public void run(){
for (int i = 0; i < 20; i++) {
//getName()方法 来自父亲
System.out.println(getName()+i);
}
}
}
测试类:
public class Demo {
public static void main(String[] args) {
System.out.println("这里是main线程");
MyThread mt = new MyThread("小强");
mt.start();//开启了一个新的线程
for (int i = 0; i < 20; i++) {
System.out.println("旺财:"+i);
}
}
}
流程图:
程序启动运行main时候,java虚拟机启动一个进程,主线程main在main()调用时候被创建。随着调用mt的对象的
start方法,另外一个新的线程也启动了,这样,整个应用就在多线程下运行。
通过这张图我们可以很清晰的看到多线程的执行流程,那么为什么可以完成并发执行呢?我们再来讲一讲原理。
多线程执行时,到底在内存中是如何运行的呢?以上个程序为例,进行图解说明:
多线程执行时,在栈内存中,其实每一个执行线程都有一片自己所属的栈内存空间。进行方法的压栈和弹栈。
当执行线程的任务结束了,线程自动在栈内存中释放了。但是当所有的执行线程都结束了,那么进程就结束了。
在上一天内容中我们已经可以完成最基本的线程开启,那么在我们完成操作过程中用到了 java.lang.Thread
类,
API中该类中定义了有关线程的一些方法,具体如下:
构造方法:
常用方法:
run
方法。翻阅API后得知创建线程的方式总共有两种,一种是继承Thread
类方式,一种是实现Runnable
接口方式,方式一我
们上一天已经完成,接下来讲解方式二实现的方式。
采用 java.lang.Runnable 也是非常常见的一种,我们只需要重写run
方法即可。
步骤如下:
Runnable
接口的实现类,并重写该接口的run()
方法,该run()
方法的方法体同样是该线程的线程执行体。Runnable
实现类的实例,并以此实例作为Thread
的target
来创建Thread
对象,该Thread
对象才是真正start()
方法来启动线程。代码如下:
public class MyRunnable implements Runnable{
@Override
public void run() {
for (int i = 0; i < 20; i++) {
System.out.println(Thread.currentThread().getName()+" "+i);
}
}
}
public class Demo {
public static void main(String[] args) {
//创建自定义类对象 线程任务对象
MyRunnable mr = new MyRunnable();
//创建线程对象
Thread t = new Thread(mr, "小强");
t.start();
for (int i = 0; i < 20; i++) {
System.out.println("旺财 " + i);
}
}
}
通过实现Runnable
接口,使得该类有了多线程类的特征。run()
方法是多线程程序的一个执行目标。所有的多线程代码都在run
方法里面。Thread
类实际上也是实现了Runnable
接口的类。
在启动的多线程的时候,需要先通过Thread
类的构造方法Thread(Runnable target)
构造出对象,然后调用Thread
对象的start()
方法来运行多线程代码。
实际上所有的多线程代码都是通过运行Thread
的start()
方法来运行的。因此,不管是继承Thread
类还是实现Runnable
接口来实现多线程,最终还是通过Thread
的对象的API来控制线程的,熟悉Thread
类的API是进行多线程编程的基础。
注意:
Runnable
对象仅仅作为Thread
对象的target
,Runnable
实现类里包含的run()
方法仅作为线程执行体。
而实际的线程对象依然是Thread
实例,只是该Thread
线程负责执行其target
的run()
方法。
如果一个类继承Thread
,则不适合资源共享。但是如果实现了Runable
接口的话,则很容易的实现资源共享。
总结:
实现Runnable
接口比继承Thread
类所具有的优势:
Runable
或Callable
类线程,不能直接放入继承Thread
的类。补充:在java中,每次程序运行至少启动2个线程。一个是main线程,一个是垃圾收集线程。因为每当使用java命令执行一个类的时候,实际上都会启动一个JVM,每一个JVM其实在就是在操作系统中启动了一个进程。
使用线程的内匿名内部类方式,可以方便的实现每个线程执行不同的线程任务操作。
使用匿名内部类的方式实现Runnable
接口,重新Runnable
接口中的run
方法:
public class NoNameInnerClassThread {
public static void main(String[] args) {
// new Runnable(){
// public void run(){
// for (int i = 0; i < 20; i++) {
// System.out.println("张宇:"+i);
// }
// }
// }; //‐‐‐这个整体 相当于new MyRunnable()
Runnable r = new Runnable(){
public void run(){
for (int i = 0; i < 20; i++) {
System.out.println("张宇:"+i);
}
}
};
new Thread(r).start();
for (int i = 0; i < 20; i++) {
System.out.println("费玉清:"+i);
}
}
}
如果有多个线程在同时运行,而这些线程可能会同时运行这段代码。程序每次运行结果和单线程运行的结果是一样
的,而且其他的变量的值也和预期的是一样的,就是线程安全的。
我们通过一个案例,演示线程的安全问题:
电影院要卖票,我们模拟电影院的卖票过程。假设要播放的电影是 “葫芦娃大战奥特曼”,本次电影的座位共100个
(本场电影只能卖100张票)。
我们来模拟电影院的售票窗口,实现多个窗口同时卖 “葫芦娃大战奥特曼”这场电影票(多个窗口一起卖这100张票)
需要窗口,采用线程对象来模拟;需要票,Runnable
接口子类来模拟
模拟票:
public class Ticket implements Runnable {
private int ticket = 100;
/*
* 执行卖票操作
*/
@Override
public void run() {
//每个窗口卖票的操作
//窗口 永远开启
while (true) {
if (ticket > 0) {
//有票 可以卖
//出票操作
//使用sleep模拟一下出票时间
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto‐generated catch block
e.printStackTrace();
}
//获取当前线程对象的名字
String name = Thread.currentThread().getName();
System.out.println(name + "正在卖:" + ticket‐‐);
}
}
}
}
测试类:
public class Demo {
public static void main(String[] args) {
//创建线程任务对象
Ticket ticket = new Ticket();
//创建三个窗口对象
Thread t1 = new Thread(ticket, "窗口1");
Thread t2 = new Thread(ticket, "窗口2");
Thread t3 = new Thread(ticket, "窗口3");
//同时卖票
t1.start();
t2.start();
t3.start();
}
}
这种问题,几个窗口(线程)票数不同步了,这种问题称为线程不安全。
线程安全问题都是由全局变量及静态变量引起的。若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作,一般都需要考虑线程同步,否则的话就可能影响线程安全。
2.2 线程同步
当我们使用多个线程访问同一资源的时候,且多个线程中对资源有写的操作,就容易出现线程安全问题。
要解决上述多线程并发访问一个资源的安全性问题:也就是解决重复票与不存在票问题,Java中提供了同步机制(synchronized
)来解决。
根据案例简述:
窗口1线程进入操作的时候,窗口2和窗口3线程只能在外等着,窗口1操作结束,窗口1和窗口2和窗口3才有机会进入代码
去执行。也就是说在某个线程修改共享资源的时候,其他线程不能修改该资源,等待修改完毕同步之后,才能去抢夺CPU
资源,完成对应的操作,保证了数据的同步性,解决了线程不安全的现象。
为了保证每个线程都能正常执行原子操作,Java引入了线程同步机制。
那么怎么去使用呢?有三种方式完成同步操作:
格式:
synchronized(同步锁){
需要同步操作的代码
}
同步锁:
对象的同步锁只是一个概念,可以想象为在对象上标记了一个锁.
注意:在任何时候,最多允许一个线程拥有同步锁,谁拿到锁就进入代码块,其他的线程只能在外等着(BLOCKED)。
使用同步代码块解决代码:
public class Ticket implements Runnable{
private int ticket = 100;
Object lock = new Object();
/*
* 执行卖票操作
*/
@Override
public void run() {
//每个窗口卖票的操作
//窗口 永远开启
while(true){
synchronized (lock) {
if(ticket>0){
//有票 可以卖
//出票操作
//使用sleep模拟一下出票时间
try {
Thread.sleep(50);
} catch (InterruptedException e) {
// TODO Auto‐generated catch block
e.printStackTrace();
}
//获取当前线程对象的名字
String name = Thread.currentThread().getName();
System.out.println(name+"正在卖:"+ticket‐‐);
}
}
}
}
}
当使用了同步代码块后,上述的线程的安全问题,解决了。
格式:
public synchronized void method(){
可能会产生线程安全问题的代码
}
同步锁是谁?
- 对于非
static
方法,同步锁就是this
。- 对于
static
方法,我们使用当前方法所在类的字节码对象(类名.class
)。
使用同步方法代码如下:
public class Ticket implements Runnable{
private int ticket = 100;
/*
* 执行卖票操作
*/
@Override
public void run() {
//每个窗口卖票的操作
//窗口 永远开启
while(true){
sellTicket();
}
}
/*
* 锁对象 是 谁调用这个方法 就是谁
* 隐含 锁对象 就是 this
*
*/
public synchronized void sellTicket(){
if(ticket>0){
//有票 可以卖
//出票操作
//使用sleep模拟一下出票时间
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// TODO Auto‐generated catch block
e.printStackTrace();
}
//获取当前线程对象的名字
String name = Thread.currentThread().getName();
System.out.println(name+"正在卖:"+ticket‐‐);
}
}
}
java.util.concurrent.locks.Lock 机制提供了比synchronized
代码块和synchronized
方法更广泛的锁定操作,同步代码块/同步方法具有的功能Lock都有,除此之外更强大,更体现面向对象。
Lock锁也称同步锁,加锁与释放锁方法化了,如下:
使用如下:
public class Ticket implements Runnable{
private int ticket = 100;
Lock lock = new ReentrantLock();
/*
* 执行卖票操作
*/
@Override
public void run() {
//每个窗口卖票的操作
//窗口 永远开启
while(true){
lock.lock();
if(ticket>0){
//有票 可以卖
//出票操作
//使用sleep模拟一下出票时间
try {
Thread.sleep(50);
} catch (InterruptedException e) {
// TODO Auto‐generated catch block
e.printStackTrace();
}
//获取当前线程对象的名字
String name = Thread.currentThread().getName();
System.out.println(name+"正在卖:"+ticket‐‐);
}
lock.unlock();
}
}
}
当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态。在线程的生命周期中,有几种状态呢?在API中 java.lang.Thread.State 这个枚举中给出了六种线程状态:
这里先列出各个线程状态发生的条件,下面将会对每种状态进行详细解析
线程状态 | 导致状态发生条件 |
---|---|
NEW(新建) | 线程刚被创建,但是并未启动。还没调用start 方法。 |
Runnable(可运行) | 线程可以在java虚拟机中运行的状态,可能正在运行自己代码,也可能没有,这取决于操作系统处理器。 |
Blocked(锁阻塞) | 当一个线程试图获取一个对象锁,而该对象锁被其他的线程持有,则该线程进入Blocked 状态;当该线程持有锁时,该线程将变成Runnable 状态。 |
Waiting(无限等待) | 一个线程在等待另一个线程执行一个(唤醒)动作时,该线程进入Waiting 状态。进入这个状态后是不能自动唤醒的,必须等待另一个线程调用notify 或者notifyAll 方法才能够唤醒。 |
TimedWaiting(计时等待) | 同waiting 状态,有几个方法有超时参数,调用他们将进入Timed Waiting 状态。这一状态将一直保持到超时期满或者接收到唤醒通知。带有超时参数的常用方法有Thread.sleep 、Object.wait 。 |
Teminated(被终止) | 因为run 方法正常退出而死亡,或者因为没有捕获的异常终止了run 方法而死亡。 |
我们不需要去研究这几种状态的实现原理,我们只需知道在做线程操作中存在这样的状态。那我们怎么去理解这几个状态呢,新建与被终止还是很容易理解的,我们就研究一下线程从Runnable
(可运行)状态与非运行状态之间的转换问题
Timed Waiting
在API中的描述为:一个正在限时等待另一个线程执行一个(唤醒)动作的线程处于这一状态。单独的去理解这句话,真是玄之又玄,其实我们在之前的操作中已经接触过这个状态了,在哪里呢?
在我们写卖票的案例中,为了减少线程执行太快,现象不明显等问题,我们在run
方法中添加了sleep
语句,这样就强制当前正在执行的线程休眠(暂停执行),以“减慢线程”。
其实当我们调用了sleep
方法之后,当前执行的线程就进入到“休眠状态”,其实就是所谓的Timed Waiting
(计时等
待),那么我们通过一个案例加深对该状态的一个理解。
实现一个计数器,计数到100,在每个数字之间暂停1秒,每隔10个数字输出一个字符串
代码:
public class MyThread extends Thread {
public void run() {
for (int i = 0; i < 100; i++) {
if ((i) % 10 == 0) {
System.out.println("‐‐‐‐‐‐‐" + i);
}
System.out.print(i);
try {
Thread.sleep(1000);
System.out.print(" 线程睡眠1秒!\n");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) {
new MyThread().start();
}
}
通过案例可以发现,sleep
方法的使用还是很简单的。我们需要记住下面几点:
TIMED_WAITING
状态的一种常见情形是调用的 sleep
方法,单独的线程也可以调用,不一定非要有协作关系。Thread.sleep()
的调用放线程run()
之内。这样才能保证该线程执行过程中会睡眠Runnable
(可运行)状态。小提示:sleep()中指定的时间是线程不会运行的最短时间。因此,sleep()方法不能保证该线程睡眠到期后就开始立刻执行。
Blocked
状态在API中的介绍为:一个正在阻塞等待一个监视器锁(锁对象)的线程处于这一状态。
我们已经学完同步机制,那么这个状态是非常好理解的了。比如,线程A
与线程B
代码中使用同一锁,如果线程A
获取到锁,线程A
进入到Runnable
状态,那么线程B
就进入到Blocked
锁阻塞状态。
这是由Runnable
状态进入Blocked
状态。除此Waiting
以及Time Waiting
状态也会在某种情况下进入阻塞状态,而这部分内容作为扩充知识点带领大家了解一下。
Wating
状态在API中介绍为:一个正在无限期等待另一个线程执行一个特别的(唤醒)动作的线程处于这一状态。
那么我们之前遇到过这种状态吗?答案是并没有,但并不妨碍我们进行一个简单深入的了解。我们通过一段代码来
学习一下:
public class WaitingTest {
public static Object obj = new Object();
public static void main(String[] args) {
// 演示waiting
new Thread(new Runnable() {
@Override
public void run() {
while (true){
synchronized (obj){
try {
System.out.println( Thread.currentThread().getName() +"=== 获取到锁对象,调用wait方法,进入waiting状态,释放锁对象");
obj.wait(); //无限等待
//obj.wait(5000); //计时等待, 5秒 时间到,自动醒来
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println( Thread.currentThread().getName() + "=== 从waiting状态醒来,获取到锁对象,继续执行了");
}
}
}
},"等待线程").start();
new Thread(new Runnable() {
@Override
public void run() {
// while (true){ //每隔3秒 唤醒一次
try {
System.out.println( Thread.currentThread().getName() +"‐‐‐‐‐ 等待3秒钟");
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
} s
ynchronized (obj){
System.out.println( Thread.currentThread().getName() +"‐‐‐‐‐ 获取到锁对象,调用notify方法,释放锁对象");
obj.notify();
}
}
// }
},"唤醒线程").start();
}
}
通过上述案例我们会发现,一个调用了某个对象的 Object.wait
方法的线程会等待另一个线程调用此对象的Object.notify()
方法 或 Object.notifyAll()
方法。
其实waiting状态并不是一个线程的操作,它体现的是多个线程间的通信,可以理解为多个线程之间的协作关系,多个线程会争取锁,同时相互之间又存在协作关系。就好比在公司里你和你的同事们,你们可能存在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。
当多个线程协作时,比如A
,B
线程,如果A
线程在Runnable
(可运行)状态中调用了wait()
方法那么A线程就进入了Waiting
(无限等待)状态,同时失去了同步锁。假如这个时候B
线程获取到了同步锁,在运行状态中调用了notify()
方法,那么就会将无限等待的A
线程唤醒。注意是唤醒,如果获取到锁对象,那么A
线程唤醒后就进入Runnable
(可运行)状态;如果没有获取锁对象,那么就进入到Blocked
(锁阻塞状态)。
到此为止我们已经对线程状态有了基本的认识,想要有更多的了解,详情可以见下图:
一条有意思的tips:
我们在翻阅API的时候会发现Timed Waiting
(计时等待) 与Waiting
(无限等待) 状态联系还是很紧密的,比如Waiting
(无限等待) 状态中wait
方法是空参的,而timed waiting
(计时等待) 中wait
方法是带参的。这种带参的方法,其实是一种倒计时操作,相当于我们生活中的小闹钟,我们设定好时间,到时通知,可是如果提前得到(唤醒)通知,那么设定好时间在通知也就显得多此一举了,那么这种设计方案其实是一举两得。如果没有得到(唤醒)通知,那么线程就处于Timed Waiting
状态,直到倒计时完毕自动醒来;如果在倒计时期间得到(唤醒)通知,那么线程从Timed Waiting
状态立刻唤醒。