一、RAID概述
RAID
为廉价磁盘冗余阵列(Redundant Array of Inexpensive Disks),RAID技术将一个个单独的磁盘以不同的组合方式形成一个逻辑硬盘,从而提高了磁盘读取的性能和数据的安全性。不同的组合方式用RAID别来标识。RAID技术是由美国加州大学伯克利分校D.A.Patterson教授在1988年提出的,作为高性能、高可靠的存储技术,在今天已经得到了广泛的应用。
二、RAID级别
RAID
技术经过不断的发展,现在已拥有了从 RAID 0 56种明确标准级别的RAID级别。另外,其他还有6710RAID 1RAID 0的组合)、01RAID 0RAID 1的组合)、30RAID 3RAID 0的组合)、50RAID 0RAID 5的组合)等。不同RAID级别代表着不同的存储性能、数据安全性和存储成本,下面将介绍如下RAID级别:01234560110
1
RAID0
RAID0
也称为条带化(stripe),将数据分成一定的大小顺序的写道阵列的磁盘里,RAID0可以并行的执行读写操作,可以充分利用总线的带宽,理论上讲,一个由N个磁盘组成的RAID0系统,它的读写性能将是单个磁盘读取性能的N倍。且磁盘空间的存储效率最大(100%)RAID0有一个明显的缺点:不提供数据冗余保护,一旦数据损坏,将无法恢复。
RAID0
应用于对读取性能要求较高但所存储的数据为非重要数据的情况下。

 

 

 

 

2RAID1
RAID1
成为镜像(mirror),它将数据完全一致的分别写到工作磁盘和镜像磁盘,因此它的磁盘空间利用率为50%,在数据写入时时间会有影响,但是读的时候没有任何影响,RAID0提供了最佳的数据保护,一旦工作磁盘发生故障,系统自动从镜像磁盘读取数据,不会影响用户工作。
RAID1
应用于对数据保护极为重视的应用。

 

 

 


3RAID2
RAID2
称为纠错海明码磁盘阵列,阵列中序号为2N的磁盘(第1246……)作为校验盘,其余的磁盘用于存放数据,磁盘数目越多,校验盘所占比率越少。RAID2在大数据存储额情况下性能很高,RAID2的实际应用很少。

 

 


4RAID3
RAID3
采用一个硬盘作为校验盘,其余磁盘作为数据盘,数据按位或字节的方式交叉的存取到各个数据盘中。不同磁盘上同一带区的数据做异或校验,并把校验值写入到校验盘中。RAID3系统在完整的情况下读取时没有任何性能上的影响,读性能与RAID0一致,却提供了数据容错能力,但是,在写时性能大为下降,因为每一次写操作,即使是改动某个数据盘上的一个数据块,也必须根据所有同一带区的数据来重新计算校验值写入到校验盘中,一个写操作包含了写入数据块,读取同一带区的数据块,计算校验值,写入校验值等操作,系统开销大为增加。
RAID3中有数据盘出现损坏,不会影响用户读取数据,如果读取的数据块正好在损坏的磁盘上,则系统需要读取所有同一带区的数据块,然后根据校验值重新构建数据,系统性能受到影响。
RAID3
的校验盘在系统接受大量的写操作时容易形成性能瓶颈,因而适用于有大量读操作如web系统以及信息查询等应用或持续大块数据流(例如非线性编辑)的应用。

 

 


5RAID4
RAID4
RAID3基本一致,区别在于条带化的方式不一样,RAID4按照块的方式存放数据,所以在写操作时只涉及两块磁盘,数据盘和校验盘,提高了系统的IO性能。但面对随机的分散的写操作,单一的校验盘往往成为性能瓶颈。

 

 

 


6RAID5
RAID5
RAID3的机制相似,但是数据校验的信息被均匀的分散到的阵列的各个磁盘上,这样就不存在并发写操作时的校验盘性能瓶颈。阵列的磁盘上既有数据,也有数据校验信息,数据块和对应的校验信息会存储于不同的磁盘上,当一个数据盘损坏时,系统可以根据同一带区的其他数据块和对应的校验信息来重构损坏的数据。

 

 

 

 

 


RAID 5可以理解为是RAID 0RAID1的折衷方案。RAID 5可以为系统提供数据安全保障,但保障程度要比RAID1低而磁盘空间利用率要比RAID1高。RAID5具有和RAID0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低。
RAID5
在数据盘损坏时的情况和RAID3相似,由于需要重构数据,性能会受到影响。
7
RAID6
RAID 6
提供两级冗余,即阵列中的两个驱动器失败时,阵列仍然能够继续工作。一般而言,RAID 6的实现代价最高,因为RAID 6不仅要支持数据的恢复,又要支持校验的恢复,这使RAID 6控制器比其他级R A I D更复杂和更昂贵。
RAID 6
的校验数据:
当对每个数据块执行写操作时,RAID 6做两个独立的校验计算,因此,它能够支持两个磁盘的失败。为了实现这个思想,目前基本上有两个已经接受的方法:(1)使用多种算法,如X O R和某种其他的函数;(2)在不同的数据分条或者磁盘上,使用排列的数据。
RAID 6
的一维冗余:
RAID 6
的第一种方法是用两种不同的方法计算校验数据。实现这个思想最容易的方法之一是用两个校验磁盘支持数据磁盘,第一个校验磁盘支持一种校验算法,而第二个磁盘支持另一种校验算法,使用两种算法称为P +Q校验。一维冗余是指使用另一个校验磁盘,但所包含的分块数据是相同的。例如,P校验值可能由X O R函数产生,这样,Q校验函数需要是其他的某种操作,一个很有力的侯选者是Reed Solomon误差修正编码的变体,这个误差修正编码一般用于磁盘和磁带驱动器。假如两个磁盘失败,那么,通过求解带有两个变量的方程,可以恢复两个磁盘上的数据,这是一个代数方法,可以由硬件辅助处理器加速求解。
8
RAID10
RAID10
RAID1RAID0的结合,也称为RAID0+1),先做镜像然后做条带化,既提高了系统的读写性能,有提供了数据冗余保护,RAID10的磁盘空间利用率和RAID1是一样的,为50%。RAID10适用于既有大量的数据需要存储,有对数据安全性有严格要求的领域,比如金融,证券等。
9
RAID01
RAID01
也是RAID0RAID1的结合,但它是对条带化后的数据进行镜像。但与RAID10不同,一个磁盘的丢失等同于整个镜像条带的丢失,所以一旦镜像盘失败,则存储系统成为一个RAID-0 系统(即只有条带化)。RAID01的实际应用非常少。
存储基础知识(四):RAID技术(下)
各种RAID级别比较
在各个raid级别中,使用最广泛的是raid0raid1raid10raid5
RAID-0
,将数据分成条带顺序写入一组磁盘中。RAID-0 不提供冗余功能,但是它却提供了卓越的吞吐性能,因为读写数据是在一组磁盘中的每个磁盘上同时处理的,吞吐性能远远超过单个磁盘的读写。
RAID-1
,每次写操作都将分别写两份到数据盘和校验盘上,每对数据盘和校验盘成为镜像磁盘组。也可使用并发的方式来读数据时,提高吞吐性能。如果镜像磁盘组中某个磁盘出错,则数据可以从另外一块磁盘获得,而不会影响系统的性能,然后,使用一块备用磁盘将健康磁盘中的数据复制出来然后这两块磁盘又组成新的镜像组。
RAID1/0
,即RAID1RAID0的结合,既做镜像又做条带化,数据先镜像再做条带化。这样数据存储既保证了可靠性,又极大地提高了吞吐性能。
RAID-0/1
也是RAID0RAID1的结合,但它是对条带化后的数据进行镜像。但与RAID10 不同,一个磁盘的丢失等同于整个镜像条带的丢失,所以一旦镜像盘失败,则存储系统成为一个RAID-0 系统(即只有条带化)。
RAID-5
是将数据校验循环分散到各个磁盘中,它像RAID-0 一样将数据条带化分散写到一组磁盘中,但同时它生成校验数据做为冗余和容错使用。校验磁盘包含了所有条带的数据的校验信息。RAID-5 将校验信息轮流地写入条带磁盘组的各个磁盘中,即每个磁盘上既有数据信息又同时有校验信息,RAID-5 的性能得益于数据的条带化,但是某个磁盘的失败却将引起整个系统的下降,这是因为系统将在承担读写任务的同时,重新构建和计算出失败磁盘上的数据,此时要使用备用磁盘对失败磁盘的数据重建恢复整个系统的健康。
从一个普通应用来讲,要求存储系统具有良好的IO性能同时也要求对数据安全做好保护工作,所以raid10raid5应该成为我们重点关注的对象。下面从IO性能,数据重构及对系统性能的影响,数据安全保护等方面,结合磁盘现状来分析两种技术的差异。
IO
的性能:
读操作上raid10raid5是相当的,RAID-5在一些很小数据的写操作(如比每个条带还小的小数据)需要2 个读、2 个写,还有2 XOR 操作,对于单个用户的写操作,在新数据应用之前必须将老的数据从校验盘中移除,整个的执行过程是这样:读出旧数据,旧数据与新数据做XOR,并创建一个即时的值,读出旧数据的校验信息,将即时值与校验数据进行XOR,最后写下新的校验信息。为了减少对系统的影响,大多数的RAID5 都读出并将整个条带(包括校验条带)写入缓存,执行2 XOR操作,然后发出并行写操作(通常对整个条带),即便了进行了上述优化,系统仍然需要为这种写操作进行额外的读和XOR操作。小量写操作困难使得RAID- 5 技术很少应用于密集写操作的场合,如回滚字段及重做日志。当然,也可以将存储系统的条带大小定义为经常读写动作的数据大小,使之匹配,但这样会限制系统的灵活性,也不适用于企业中其它的应用。对于raid10,由于不存在数据校验,每次写操作只是单纯的执行写操作。应此在写性能上raid10要好于raid5
数据重构:
对于raid10,当一块磁盘失效时,进行数据重构的操作只是复制一个新磁盘,如果假定磁盘的容量为250G,那么复制的数据量为250G。对于raid5的存储阵列,则需要从每块磁盘中读取数据,经过重新计算得到一块硬盘的数据量,如果raid5是以4+1的方式组建,每块磁盘的容量也为250G,那么,需要在剩余的4个磁盘中读出总共是1000G的数据量计算得出250G的数据。从这点来看,raid5在数据重构上的工作负荷和花费的时间应该远大于raid10,负荷变大将影响重构期间的性能,时间长意味再次出现数据损坏的可能性变大。
数据安全保护:
raid10
系统在已有一块磁盘失效的情况下,只有出现该失效盘的对应镜像盘也失效,才会导致数据丢失。其他的磁盘失效不会出现数据丢失情况。Raid5系统在已有一块磁盘失效的情况下,只要再出现任意的一块磁盘失效,都将导致数据丢失。
从综合来看,raid10raid5系统在出现一块磁盘失效后,进行数据重构时,raid5需耗费的时间要比raid10长,同时重构期间系统负荷上raid5要比raid10高,同时raid5出现数据丢失的可能性要比raid10高,因此,数据重构期间,raid5系统的可靠性远比raid10的低。Raid5在磁盘空间率用率上比raid10高,raid5的空间利用率是(N-1/ N    N为阵列的磁盘数目),而raid10的磁盘空间利用率仅为50%。但是结合磁盘来考虑,今天的硬盘厂商所生产的ATASATA硬盘的质量已经可以承担企业级的应用,并且,容量的增加幅度相当大,目前已经可以实现单个磁盘400G的存储容量。SCSI硬盘由于要求高转速而使用小直径盘片,容量的增加相对缓慢。ATA磁盘相对SCSI磁盘拥有成本也要小很多。
因此,在采用价格昂贵的FCSCSI硬盘的存储系统中,对于预算有限同时数据安全性要求不高的场合可以采用RAID5方式来折中;其他应用中采用大容量ATASATA硬盘结合raid10,既降低了raid10的为获得一定的存储空间必须采用双倍磁盘空间的拥有成本,又避免了raid5相对raid10的各种缺点。在企业应用中,raid10结合SATA磁盘意味着一个更好的选择。