Help Jimmy
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 14214 | Accepted: 4729 |
Description
"Help Jimmy" 是在下图所示的场景上完成的游戏。
场景中包括多个长度和高度各不相同的平台。地面是最低的平台,高度为零,长度无限。
Jimmy老鼠在时刻0从高于所有平台的某处开始下落,它的下落速度始终为1米/秒。当Jimmy落到某个平台上时,游戏者选择让它向左还是向右跑,它跑动的速度也是1米/秒。当Jimmy跑到平台的边缘时,开始继续下落。Jimmy每次下落的高度不能超过MAX米,不然就会摔死,游戏也会结束。
设计一个程序,计算Jimmy到底地面时可能的最早时间。
场景中包括多个长度和高度各不相同的平台。地面是最低的平台,高度为零,长度无限。
Jimmy老鼠在时刻0从高于所有平台的某处开始下落,它的下落速度始终为1米/秒。当Jimmy落到某个平台上时,游戏者选择让它向左还是向右跑,它跑动的速度也是1米/秒。当Jimmy跑到平台的边缘时,开始继续下落。Jimmy每次下落的高度不能超过MAX米,不然就会摔死,游戏也会结束。
设计一个程序,计算Jimmy到底地面时可能的最早时间。
Input
第一行是测试数据的组数t(0 <= t <= 20)。每组测试数据的第一行是四个整数N,X,Y,MAX,用空格分隔。N是平台的数目(不包括地面),X和Y是Jimmy开始下落的位置的横竖坐标,MAX是一次下落的最大高度。接下来的N行每行描述一个平台,包括三个整数,X1[i],X2[i]和H[i]。H[i]表示平台的高度,X1[i]和X2[i]表示平台左右端点的横坐标。1 <= N <= 1000,-20000 <= X, X1[i], X2[i] <= 20000,0 < H[i] < Y <= 20000(i = 1..N)。所有坐标的单位都是米。
Jimmy的大小和平台的厚度均忽略不计。如果Jimmy恰好落在某个平台的边缘,被视为落在平台上。所有的平台均不重叠或相连。测试数据保证问题一定有解。
Jimmy的大小和平台的厚度均忽略不计。如果Jimmy恰好落在某个平台的边缘,被视为落在平台上。所有的平台均不重叠或相连。测试数据保证问题一定有解。
Output
对输入的每组测试数据,输出一个整数,Jimmy到底地面时可能的最早时间。
Sample Input
1 3 8 17 20 0 10 8 0 10 13 4 14 3
Sample Output
23
思路:本来以为是dp二维x, y, 但是不可能开那么大,状态也不好规划。无奈之下看了题解。
dp[i][0]表示从左边到达i的最小花费
dp[i][1]表示从右边到达i的最小花费
然后考虑怎么转移。
例:
-----------------------------------
---------------- --------------------
到达最上面的木板可以从左边或右边,下面的一直递推。
状态转移方程:
dp[i][0] = h[i] - h[j] + min( dp[j][0] + l[i] - l[j], dp[j][1] + r[j] - l[i] )
dp[i][1] = h[i] - h[j] + min( dp[j][0] + r[i] - l[j], dp[j][1] + r[j] - r[i] )
也就是线段左端 + 交叉的距离 或 线段右端 + 交叉的距离
其中还有最大高度的细节处理,分为两类,①找不到并且距离之外,②找不到但距离之内
1 #include2 #include 3 #include 4 #include <string.h> 5 #include 6 #include <string> 7 #include 8 #include <set> 9 #include