最大类间方差法Ostu的C++实现

① 设灰度级为L,灰度值i的像素出现的频数为。分别为所纷呈的两个像素类的面积比,即

② 分别为两个像素类的平均灰度值,即
最大类间方差法Ostu的C++实现_第1张图片
③计算类间方差,并找出最大类间方差以及对应的阈值。
最大类间方差法Ostu的C++实现_第2张图片
④ 求为最大值时的t,作为图像分割的最佳阈值T。
int otsu(IplImage* image)
{
assert(NULL != image);
int width = image->width;
int height = image->height;
int x = 0, y = 0;
int pixelCount[256];
float pixelPro[256];
int i, j, pixelSum = width * height, threshold = 0;
uchar* data = (uchar*)image->imageData;
//初始化
for (i = 0; i < 256; i++)
{
pixelCount[i] = 0;
pixelPro[i] = 0;
}
//统计灰度级中每个像素在整幅图像中的个数
for (i = y; i < height; i++)
{
for (j = x; j < width; j++)
{
pixelCount[data[i * image->widthStep + j]]++;
}
}
//计算每个像素在整幅图像中的比例
for (i = 0; i < 256; i++)
{
pixelPro[i] = (float)(pixelCount[i]) / (float)(pixelSum);
}
//经典ostu算法,得到前景和背景的分割
//遍历灰度级[0,255],计算出方差最大的灰度值,为最佳阈值
float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0;
for (i = 0; i < 256; i++)
{
w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;
for (j = 0; j < 256; j++)
{
if (j <= i) //背景部分
{
//以i为阈值分类,第一类总的概率
w0 += pixelPro[j];
u0tmp += j * pixelPro[j];
}
else //前景部分
{
//以i为阈值分类,第二类总的概率
w1 += pixelPro[j];
u1tmp += j * pixelPro[j];
}
}
u0 = u0tmp / w0; //第一类的平均灰度
u1 = u1tmp / w1; //第二类的平均灰度
u = u0tmp + u1tmp; //整幅图像的平均灰度
//计算类间方差
deltaTmp = w0 * (u0 - u) * (u0 - u) + w1 * (u1 - u) * (u1 - u);
//找出最大类间方差以及对应的阈值
if (deltaTmp > deltaMax)
{
deltaMax = deltaTmp;
threshold = i;
}
}
//返回最佳阈值;
return threshold;
}

代码如下:(可直接运行使用)
https://download.csdn.net/download/chengxuyuanliwanwan/12601166

你可能感兴趣的:(网络,算法)