给出一些比赛,每场比赛有一个人会胜出,问胜出最多次的人最少胜出多少次。
首先二分答案,转化成判定问题。观察题目,注意到每场比赛只有一个人胜出,那么这可以成为网络流建图流量限制的依据。
具体:
S->每个人 f:二分的最大胜出次数。
每个人->他参与的比赛 f:1
每场比赛->T f:1
每次判断最大流和比赛是否相等。
#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#include
#include
#define MAXP 20010
#define MAXE 1000010
#define S 0
#define T (MAXP - 1)
#define INF 0x3f3f3f3f
using namespace std;
struct MaxFlow{
int head[MAXP], total;
int _next[MAXE], aim[MAXE], flow[MAXE];
int deep[MAXP];
void Reset() {
total = 1;
memset(head, 0, sizeof(head));
}
void Add(int x, int y, int f) {
_next[++total] = head[x];
aim[total] = y;
flow[total] = f;
head[x] = total;
}
void Insert(int x, int y, int f) {
Add(x, y, f);
Add(y, x, 0);
}
bool BFS() {
static queue<int> q;
while(!q.empty()) q.pop();
memset(deep, 0, sizeof(deep));
deep[S] = 1;
q.push(S);
while(!q.empty()) {
int x = q.front(); q.pop();
for(int i = head[x]; i; i = _next[i])
if(flow[i] && !deep[aim[i]]) {
deep[aim[i]] = deep[x] + 1;
q.push(aim[i]);
if(aim[i] == T) return true;
}
}
return false;
}
int Dinic(int x, int f) {
if(x == T) return f;
int temp = f;
for(int i = head[x]; i; i = _next[i])
if(flow[i] && temp && deep[aim[i]] == deep[x] + 1) {
int away = Dinic(aim[i], min(flow[i], temp));
if(!away) deep[aim[i]] = 0;
flow[i] -= away;
flow[i^1] += away;
temp -= away;
}
return f - temp;
}
}solver;
pair<int, int> match[MAXP];
int points, edges;
inline void BuildGraph(int ans)
{
solver.Reset();
for(int i = 1; i <= points; ++i)
solver.Insert(S, i, ans);
for(int i = 1; i <= edges; ++i) {
solver.Insert(points + i, T, 1);
solver.Insert(match[i].first, points + i, 1);
solver.Insert(match[i].second, points + i, 1);
}
}
int main()
{
cin >> points >> edges;
for(int i = 1; i <= edges; ++i)
scanf("%d%d", &match[i].first, &match[i].second);
int l = 1, r = edges, ans = 1;
while(l <= r) {
int mid = (l + r) >> 1;
BuildGraph(mid);
int max_flow = 0;
while(solver.BFS())
max_flow += solver.Dinic(S, INF);
if(max_flow == edges)
r = mid - 1, ans = mid;
else
l = mid + 1;
}
cout << ans << endl;
return 0;
}