Codeforces-813D Two Melodies(dp)

D. Two Melodies
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Alice is a beginner composer and now she is ready to create another masterpiece. And not even the single one but two at the same time!

Alice has a sheet with n notes written on it. She wants to take two such non-empty non-intersecting subsequences that both of them form a melody and sum of their lengths is maximal.

Subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.

Subsequence forms a melody when each two adjacent notes either differs by 1 or are congruent modulo 7.

You should write a program which will calculate maximum sum of lengths of such two non-empty non-intersecting subsequences that both of them form a melody.

Input

The first line contains one integer number n (2 ≤ n ≤ 5000).

The second line contains n integer numbers a1, a2, ..., an (1 ≤ ai ≤ 105) — notes written on a sheet.

Output

Print maximum sum of lengths of such two non-empty non-intersecting subsequences that both of them form a melody.

Examples
input
4
1 2 4 5
output
4
input
6
62 22 60 61 48 49
output
5
Note

In the first example subsequences [1, 2] and [4, 5] give length 4 in total.

In the second example subsequences [62, 48, 49] and [60, 61] give length 5 in total. If you choose subsequence [62, 61] in the first place then the second melody will have maximum length 2, that gives the result of 4, which is not maximal.


设dp[i][j]为2个子序列的结尾分别为i和j时的最大总产度,可以令ij并枚举i,则当前的j有可能是已经被第一个子序列选择过的。由于dp[i][j]和dp[j][i]是相等的,因此每次更新完dp[i][j]可以令dp[j][i]=dp[i][j],这样自然就求出了i>j时的情况


#include 
#define x first
#define y second
using namespace std;
typedef long long LL;
const int MX = 5005;
const int MXM = 1e5 + 5;
int dp[MX][MX]; //dp[i][j]表示以i,j结尾的2个子序列的总长度
int a[MX], pre[MXM], mod[8];
int main() {
    //freopen("in.txt", "r", stdin);
    int n, ans = 0;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    for (int i = 0; i <= n; i++) {  //枚举结尾小的i,更新结尾大的j,从而保证不重复
        memset(pre, 0, sizeof(pre));
        memset(mod, 0, sizeof(mod));
        for (int j = 1; j < i; j++) {
            pre[a[j]] = max(pre[a[j]], dp[i][j]);//pre维护前缀中结尾为a[j]的最大总长度
            mod[a[j] % 7] = max(mod[a[j] % 7], dp[i][j]);//mod维护前缀中结尾模7后的最大总长度
        }
        for (int j = i + 1; j <= n; j++) {
            dp[i][j] = max(pre[a[j] + 1], pre[a[j] - 1]) + 1;
            dp[i][j] = max(dp[i][j], mod[a[j] % 7] + 1);
            dp[i][j] = max(dp[i][j], dp[i][0] + 1);
            dp[j][i] = dp[i][j];    //对称
            pre[a[j]] = max(pre[a[j]], dp[i][j]);
            mod[a[j] % 7] = max(mod[a[j] % 7], dp[i][j]);
            ans = max(ans, dp[i][j]);
        }
    }
    printf("%d\n", ans);
    return 0;
}


你可能感兴趣的:(DP)