欢迎关注”生信修炼手册”!
在matplotlib中,imshow方法用于绘制热图,基本用法如下
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(123456789)
data = np.random.rand(25).reshape(5, 5)
plt.imshow(data)
输出结果如下
imshow方法首先将二维数组的值标准化为0到1之间的值,然后根据指定的渐变色依次赋予每个单元格对应的颜色,就形成了热图。对于热图而言,通常我们还需要画出对应的图例,图例通过colorbar方法来实现,代码如下
plt.imshow(data)
plt.colorbar()
输出结果如下
imshow方法常用的几个参数如下
1. cmap
cmap是colormap的简称,用于指定渐变色,默认的值为viridis, 在matplotlib中,内置了一系列的渐变色,用法如下
plt.imshow(data, cmap='Greens')
输出结果如下
完整的内置colormap的列表见如下链接
https://matplotlib.org/tutorials/colors/colormaps.html
2. aspect
aspect用于指定热图的单元格的大小,默认值为equal,此时单元格用于是一个方块,当设置为auto时,会根据画布的大小动态调整单元格的大小,用法如下
plt.imshow(data, aspect='auto')
输出结果如下
3. alpha
alpha参数用于指定透明度,用法如下
plt.imshow(data, alpha=0.8)
输出结果如下
4. origin
orign参数指定绘制热图时的方向,默认值为upper, 此时热图的右上角为(0, 0), 当设置为lower时,热图的左下角为(0,0), 用法如下
plt.imshow(data, origin='lower')
输出结果如下
5. vmin和vmax
vmin和vmax参数用于限定数值的范围,只将vmin和vmax之间的值进行映射,用法如下
plt.imshow(data, vmin=-0.8, vmax=0.8)
plt.colorbar()
输出结果如下
6. interpolation
interprolation参数控制热图的显示形式,是一个较难理解的参数,同样的数据,不同取值对应的热图形式如下
在日常使用而言,nearest和None是应用的最多的。
7. extent
extent参数指定热图x轴和y轴的极值,取值为一个长度为4的元组或列表,其中,前两个数值对应x轴的最小值和最大值,后两个参数对应y轴的最小值和最大值,用法如下
plt.imshow(data, extent=(-0.5, 4.5, 4.5, -0.5))
输出结果如下
可以看到,上述代码的输出和默认输出完全一致。其实, extent和origin两个参数是相互关联的,origin参数的值为upper时,extent参数的默认值如下
(-0.5, ncol(data) - 0.5, nrow(data)-0.5, 0.5)
当origin参数的值为lower时,extent参数的默认值如下
(-0.5, ncol(data) - 0.5, -0.5, nrow(data)-0.5)
修改extent参数的值,图中单元格对应的刻度会发生变化,示意如下
plt.imshow(data,extent=(-0.5,5.5,-5.5,0.5))
输出结果如下
大多数的情况下,我们都不需要自己来手动指定extent参数的值。
在绘制热图时,还可以结合xlim和ylim参数,来为热图的周围增加空隙,代码如下
plt.imshow(data)
plt.xlim(-1, 5)
plt.ylim(5, -1)
plt.colorbar()
输出结果如下
相比R语言中的热图,matplotlib中的热图没有聚类树的功能,需要自己手动来实现,但是可以很方便的添加图例,而且受益于matplotlib灵活的基础功能,可以实现非常复杂的如图。
·end·
—如果喜欢,快分享给你的朋友们吧—
原创不易,欢迎收藏,点赞,转发!生信知识浩瀚如海,在生信学习的道路上,让我们一起并肩作战!
本公众号深耕耘生信领域多年,具有丰富的数据分析经验,致力于提供真正有价值的数据分析服务,擅长个性化分析,欢迎有需要的老师和同学前来咨询。
更多精彩
KEGG数据库,除了pathway你还知道哪些
全网最完整的circos中文教程
DNA甲基化数据分析专题
突变检测数据分析专题
mRNA数据分析专题
lncRNA数据分析专题
circRNA数据分析专题
miRNA数据分析专题
单细胞转录组数据分析专题
chip_seq数据分析专题
Hi-C数据分析专题
HLA数据分析专题
TCGA肿瘤数据分析专题
基因组组装数据分析专题
CNV数据分析专题
GWAS数据分析专题
2018年推文合集
2019年推文合集
写在最后
转发本文至朋友圈,后台私信截图即可加入生信交流群,和小伙伴一起学习交流。
扫描下方二维码,关注我们,解锁更多精彩内容!
一个只分享干货的
生信公众号