深度学习中不变性是什么?平移不变性Translation Invariance、旋转/视角不变性Ratation/Viewpoint Invariance、尺度不变性Size、Illumination

文章目录

  • 不变性定义
  • 不变性分类
  • 为什么卷积神经网络具有平移不变性

不变性定义

意味着即使目标的外观发生了某种变化,但是你依然可以把它识别出来。这对图像分类来说是一种很好的特性,因为我们希望图像中目标无论是被平移,被旋转,还是被缩放,甚至是不同的光照条件、视角,都可以被成功地识别出来。

不变性分类

  • 平移不变性:Translation Invariance
  • 旋转/视角不变性:Ratation/Viewpoint Invariance
  • 尺度不变性:Size Invariance
  • 光照不变性:Illumination Invariance

为什么卷积神经网络具有平移不变性

简单地说,卷积+最大池化约等于平移不变性。

卷积:简单地说,图像经过平移,相应的特征图上的表达也是平移的。下图只是一个为了说明这个问题的例子。输入图像的左下角有一个人脸,经过卷积,人脸的特征(眼睛,鼻子)也位于特征图的左下角。
深度学习中不变性是什么?平移不变性Translation Invariance、旋转/视角不变性Ratation/Viewpoint Invariance、尺度不变性Size、Illumination_第1张图片
假如人脸特征在图像的左上角,那么卷积后对应的特征也在特征图的左上角。
深度学习中不变性是什么?平移不变性Translation Invariance、旋转/视角不变性Ratation/Viewpoint Invariance、尺度不变性Size、Illumination_第2张图片
在神经网络中,卷积被定义为不同位置的特征检测器,也就意味着,无论目标出现在图像中的哪个位置,它都会检测到同样的这些特征,输出同样的响应。比如人脸被移动到了图像左下角,卷积核直到移动到左下角的位置才会检测到它的特征。

池化:比如最大池化,它返回感受野中的最大值,如果最大值被移动了,但是仍然在这个感受野中,那么池化层也仍然会输出相同的最大值。这就有点平移不变的意思了。

所以这两种操作共同提供了一些平移不变性,即使图像被平移,卷积保证仍然能检测到它的特征,池化则尽可能地保持一致的表达。

参考文章1:卷积神经网络为什么具有平移不变性?

参考文章2:深度学习基础–卷积神经网络的不变性

你可能感兴趣的:(卷积神经网络,深度学习,deep_learning)