Leetcode-1277. Count Square Submatrices with All Ones 统计全为 1 的正方形子矩阵 (DP)

题目

给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。
链接:https://leetcode.com/problems/count-square-submatrices-with-all-ones/

Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.

Example:

Input: matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
Output: 15
Explanation:
There are 10 squares of side 1.
There are 4 squares of side 2.
There is 1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.

思路及代码

DP

  • 同Leetcode-221
  • square[i][j]:以i,j为右下角顶点的最大正方形边长
  • square[i][j] = matrix[i][j]*(min(square[i-1][j-1], square[i-1][j], square[i][j-1]) + 1)
class Solution:
    def countSquares(self, matrix: List[List[int]]) -> int:
        if not matrix:
            return 0
        ans = 0
        m = len(matrix)
        n = len(matrix[0])
        square = [[0 for i in range(n)] for j in range(m)]      
        for i in range(m):
            for j in range(n):
                if not matrix[i][j]:
                    continue
                if i == 0 or j == 0:
                    square[i][j] = int(matrix[i][j])
                else:
                    square[i][j] = int(matrix[i][j])*(min(square[i-1][j-1], square[i-1][j], square[i][j-1]) + 1)
                ans += square[i][j]
        return ans

复杂度

T = O ( m n ) O(mn) O(mn)
S = O ( m n ) O(mn) O(mn)

你可能感兴趣的:(Leetcode,leetcode,python,算法,动态规划)