图论:图的四种最短路径算法

本文总结了图的几种最短路径算法的实现:深度或广度优先搜索算法,弗洛伊德算法,迪杰斯特拉算法,Bellman-Ford算法

1),深度或广度优先搜索算法(解决单源最短路径)
从起始结点开始访问所有的深度遍历路径或广度优先路径,则到达终点结点的路径有多条,取其中路径权值最短的一条则为最短路径。

下面是核心代码:


void dfs(int cur, int dst){    
    /***operation***/    
    
    /***operation***/    
    if(minPath < dst) return;//当前走过路径大于之前最短路径,没必要再走下去    
    if(cur == n){//临界条件    
        if(minPath > dst) minPath = dst;    
        return;    
    }    
    else{    
        int i;    
        for(i = 1; i <= n; i++){    
            if(edge[cur][i] != inf && edge[cur][i] != 0 && mark[i] == 0){    
                mark[i] = 1;    
                dfs(i, dst+edge[cur][i]);    
                mark[i] = 0;  //需要在深度遍历返回时将访问标志置0              
            }    
        }    
        return;    
    }    
}
例1:下面是城市的地图,注意是单向图,求城市1到城市5的最短距离。(引用的是上次总结的图论(一)中1)的例2)

/***先输入n个结点,m条边,之后输入有向图的m条边,边的前两元素表示起始结点,第三个值表权值,输出1号城市到n号城市的最短距离***/    
/***算法的思路是访问所有的深度遍历路径,需要在深度遍历返回时将访问标志置0***/    
#include     
#include     
#define nmax 110    
#define inf 999999999    
using namespace std;    
int n, m, minPath, edge[nmax][nmax], mark[nmax];//结点数,边数,最小路径,邻接矩阵,结点访问标记    
void dfs(int cur, int dst){    
    /***operation***/    
    
    /***operation***/    
    if(minPath < dst) return;//当前走过路径大于之前最短路径,没必要再走下去    
    if(cur == n){//临界条件    
        if(minPath > dst) minPath = dst;    
        return;    
    }    
    else{    
        int i;    
        for(i = 1; i <= n; i++){    
            if(edge[cur][i] != inf && edge[cur][i] != 0 && mark[i] == 0){    
                mark[i] = 1;    
                dfs(i, dst+edge[cur][i]);    
                mark[i] = 0;                
            }    
        }    
        return;    
    }    
}    
    
int main(){    
    while(cin >> n >> m && n != 0){    
        //初始化邻接矩阵    
        int i, j;    
        for(i = 1; i <= n; i++){    
            for(j = 1; j <= n; j++){    
                edge[i][j] = inf;    
            }    
            edge[i][i] = 0;    
        }    
        int a, b;    
        while(m--){    
            cin >> a >> b;    
            cin >> edge[a][b];    
        }    
        //以dnf(1)为起点开始递归遍历    
        memset(mark, 0, sizeof(mark));    
        minPath = inf;    
        mark[1] = 1;    
        dfs(1, 0);    
        cout << minPath << endl;    
    }    
    return 0;    
}

程序运行结果如下:

2),弗洛伊德算法(解决多源最短路径):时间复杂度O(n^3),空间复杂度O(n^2)
基本思想:最开始只允许经过1号顶点进行中转,接下来只允许经过1号和2号顶点进行中转......允许经过1~n号所有顶点进行中转,来不断动态更新任意两点之间的最短路程。即求从i号顶点到j号顶点只经过前k号点的最短路程。

分析如下:1,首先构建邻接矩阵Floyd[n+1][n+1],假如现在只允许经过1号结点,求任意两点间的最短路程,很显然Floyd[i][j] = min{Floyd[i][j], Floyd[i][1]+Floyd[1][j]},代码如下:

for(i = 1; i <= n; i++){  
    for(j = 1; j <= n; j++){  
        if(Floyd[i][j] > Floyd[i][1] + Floyd[1][j])  
            Floyd[i][j] = Floyd[i][1] + Floyd[1][j];  
    }  
}  

2, 接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短距离,在已经实现了从i号顶点到j号顶点只经过前1号点的最短路程的前提下,现在再插入第2号结点,来看看能不能更新更短路径,故只需在步骤1求得的Floyd[n+1][n+1]基础上,进行Floyd[i][j] = min{Floyd[i][j], Floyd[i][2]+Floyd[2][j]};......

3,很显然,需要n次这样的更新,表示依次插入了1号,2号......n号结点,最后求得的Floyd[n+1][n+1]是从i号顶点到j号顶点只经过前n号点的最短路程。故核心代码如下:

#define inf 99999999  
for(k = 1; k <= n; k++){  
    for(i = 1; i <= n; i++){  
        for(j = 1; j <= n; j++){  
            if(Floyd[i][k] < inf && Floyd[k][j] < inf && Floyd[i][j] > Floyd[i][k] + Floyd[k][j])  
                Floyd[i][j] = Floyd[i][k] + Floyd[k][j];  
        }  
    }  
}  

例1:寻找最短的从商店到赛场的路线。其中商店在1号结点处,赛场在n号结点处,1~n结点中有m条线路双向连接。

/***先输入n,m,再输入m个三元组,n为路口数,m表示有几条路其中1为商店,n为赛场,三元组分别表起点,终点,该路径长,输出1到n的最短路径***/  
#include   
using namespace std;  
#define inf 99999999  
#define nmax 110  
int edge[nmax][nmax], n, m;  
int main(){  
    while(cin >> n >> m && n!= 0){  
        //构建邻接矩阵  
        int i, j;  
        for(i = 1; i <= n; i++){  
            for(j = 1; j <= n; j++){  
                edge[i][j] = inf;  
            }  
            edge[i][i] = 0;  
        }  
        while(m--){  
            cin >> i >> j;  
            cin >> edge[i][j];  
            edge[j][i] = edge[i][j];  
        }  
        //使用弗洛伊德算法  
        int k;  
        for(k = 1; k <= n; k++){  
            for(i = 1; i <= n; i++){  
                for(j = 1; j <= n; j++){  
                    if(edge[i][k] < inf && edge[k][j] < inf && edge[i][j] > edge[i][k] + edge[k][j])  
                        edge[i][j] = edge[i][k] + edge[k][j];  
                }  
            }  
        }  
        cout << edge[1][n] << endl;  
    }  
    return 0;  
}
程序运行结果如下:



3),迪杰斯特拉算法(解决单源最短路径)
基本思想:每次找到离源点(如1号结点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。
基本步骤:1,设置标记数组book[]:将所有的顶点分为两部分,已知最短路径的顶点集合P和未知最短路径的顶点集合Q,很显然最开始集合P只有源点一个顶点。book[i]为1表示在集合P中;
2,设置最短路径数组dst[]并不断更新:初始状态下,令dst[i] = edge[s][i](s为源点,edge为邻接矩阵),很显然此时dst[s]=0,book[s]=1。此时,在集合Q中可选择一个离源点s最近的顶点u加入到P中。并依据以u为新的中心点,对每一条边进行松弛操作(松弛是指由结点s-->j的途中可以经过点u,并令dst[j]=min{dst[j], dst[u]+edge[u][j]}),并令book[u]=1;
3,在集合Q中再次选择一个离源点s最近的顶点v加入到P中。并依据v为新的中心点,对每一条边进行松弛操作(即dst[j]=min{dst[j], dst[v]+edge[v][j]}),并令book[v]=1;
4,重复3,直至集合Q为空。
以下是图示:


核心代码如下所示:

#define inf 99999999  
/***构建邻接矩阵edge[][],且1为源点***/  
for(i = 1; i <= n; i++) dst[i] = edge[1][s];  
for(i = 1; i <= n; i++) book[i] = 0;  
book[1] = 1;  
for(i = 1; i <= n-1; i++){  
    //找到离源点最近的顶点u,称它为新中心点  
    min = inf;  
    for(j = 1; j <= n; j++){  
        if(book[j] == 0 && dst[j] < min){  
            min = dst[j];  
            u = j;  
        }  
    }  
    book[u] = 1;  
    //更新最短路径数组  
    for(k = 1; k <= n; k++){  
        if(edge[u][k] < inf && book[k] == 0){  
            if(dst[k] > dst[u] + edge[u][k])  
                dst[k] = dst[u] + edge[u][k];             
        }  
    }  
}
例1:给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s,终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
输入:输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数s,t;起点s,终点 t。n和m为 0 时输入结束。(1输出:输出一行,有两个数, 最短距离及其花费。
分析:由于每条边有长度d和花费p,最好构建边结构体存放,此外可以使用邻接链表,使用邻接链表时需要将上面的核心代码修改几个地方:

1,初始化dst[]时使用结点1的邻接链表;
2,更新最短路径数组时,k的范围由1~n变为1~edge[u].size()。先采用邻接矩阵解决此题,再使用邻接表解决此题,两种方法的思路都一样:初始化邻接矩阵或邻接链表,并
初始化最短路径数组dst ----> n-1轮边的松弛中,先找到离新源点最近的中心点u,之后根据中心点u为转折点来更新路径数组。

使用邻接矩阵求解:

/***对于无向图,输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数s,t;起点s,终点 t。***/  
/***n和m为 0 时输入结束。(1  
#include   
using namespace std;  
#define nmax 1001  
#define inf 99999999  
struct Edge{  
    int len;  
    int cost;  
};  
Edge edge[nmax][nmax];  
int dst[nmax], spend[nmax], book[nmax], n, m, stNode, enNode;  
int main(){  
    while(cin >> n >> m && n != 0 && m != 0){  
        int a, b, i, j;  
        //构建邻接矩阵和最短路径数组  
        for(i = 1; i <= n; i++){  
            for(j = 1; j <= n; j++){  
                edge[i][j].cost = 0;  
                edge[i][j].len = inf;  
            }  
            edge[i][i].len = 0;  
        }  
        while(m--){  
            cin >> a >> b;  
            cin >> edge[a][b].len >> edge[a][b].cost;  
            edge[b][a].len = edge[a][b].len;  
            edge[b][a].cost = edge[a][b].cost;  
        }  
        cin >> stNode >> enNode;  
        for(i = 1; i <= n; i++){  
            dst[i] = edge[stNode][i].len;  
            spend[i] = edge[stNode][i].cost;  
        }  
        memset(book, 0, sizeof(book));  
        book[stNode] = 1;  
        //开始迪杰斯特拉算法,进行剩余n-1次松弛  
        int k;  
        for(k = 1; k <= n-1; k++){  
            //找离源点最近的顶点u  
            int minNode, min = inf;  
            for(i = 1; i <= n; i++){  
                if(book[i] == 0 && min > dst[i] /* || min == dst[i]&& edge[stNode][min].cost > edge[stNode][i].cost*/){  
                    min = dst[i];  
                    minNode = i;  
                }  
            }  
            //cout << setw(2) << minNode;  
            book[minNode] = 1;//易错点1,错写成book[i]=1  
            //以中心点u为转折点来更新路径数组和花费数组  
            for(i = 1; i <= n; i++){  
                if(book[i] == 0 && dst[i] > dst[minNode] + edge[minNode][i].len || dst[i] == dst[minNode] + edge[minNode][i].len && spend[i] > spend[minNode] + edge[minNode][i].cost){  
                    dst[i] = dst[minNode] + edge[minNode][i].len;//易错点2,错写成dst[i]+  
                    spend[i] = spend[minNode] + edge[minNode][i].cost;  
                }  
            }  
        }  
        cout << dst[enNode] << setw(3) << spend[enNode] << endl;  
    }  
    return 0;  
} 
程序运行结果如下:



使用邻接链表求解:

/***对于无向图,输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数s,t;起点s,终点 t。***/  
/***n和m为 0 时输入结束。(1  
#include   
#include   
using namespace std;  
#define nmax 1001  
#define inf 99999999  
struct Edge{  
    int len;  
    int cost;  
    int next;  
};  
vector edge[nmax];  
int dst[nmax], spend[nmax], book[nmax], n, m, stNode, enNode;  
int main(){  
    while(cin >> n >> m && n != 0 && m != 0){  
        int a, b, i, j;  
        //构建邻接表和最短路径数组  
        for(i = 1; i <= n; i++) edge[i].clear();  
        while(m--){  
            Edge tmp;  
            cin >> a >> b;  
            tmp.next = b;  
            cin >> tmp.len >> tmp.cost;  
            edge[a].push_back(tmp);  
            tmp.next = a;  
            edge[b].push_back(tmp);  
        }  
        cin >> stNode >> enNode;  
        for(i = 1; i <= n; i++) dst[i] = inf; //注意2,别忘记写此句来初始化dst[]  
        for(i = 0; i < edge[stNode].size(); i++){//注意1,从下标0开始存元素,误写成i <= edge[stNode].size()  
            dst[edge[stNode][i].next] = edge[stNode][i].len;  
            //cout << dst[2] << endl;  
            spend[edge[stNode][i].next] = edge[stNode][i].cost;  
        }  
        memset(book, 0, sizeof(book));  
        book[stNode] = 1;  
        //开始迪杰斯特拉算法,进行剩余n-1次松弛  
        int k;  
        for(k = 1; k <= n-1; k++){  
            //找离源点最近的顶点u  
            int minnode, min = inf;  
            for(i = 1; i <= n; i++){  
                if(book[i] == 0 && min > dst[i] /* || min == dst[i]&& edge[stnode][min].cost > edge[stnode][i].cost*/){  
                    min = dst[i];  
                    minnode = i;  
                }  
            }  
            //cout << setw(2) << minnode;  
            book[minnode] = 1;//易错点1,错写成book[i]=1  
            //以中心点u为转折点来更新路径数组和花费数组  
            for(i = 0; i < edge[minnode].size(); i++){  
                int t = edge[minnode][i].next;//别忘了加此句,表示与结点minnode相邻的点  
                if(book[t] == 0 && dst[t] > dst[minnode] + edge[minnode][i].len || dst[t] == dst[minnode] + edge[minnode][i].len && spend[t] > spend[minnode] + edge[minnode][i].cost){  
                    dst[t] = dst[minnode] + edge[minnode][i].len;  
                    spend[t] = spend[minnode] + edge[minnode][i].cost;  
                }  
            }  
        }  
        cout << dst[enNode] << setw(3) << spend[enNode] << endl;  
    }  
    return 0;  
}  

程序运行结果如下:


使用邻接表时,注意更新dst[],book[]时要使用邻接表元素对应下标中的next成员,而涉及到权值加减时时需要使用邻接表中的对应下标来取得权值;而使用邻接矩阵就没这么多顾虑了,因为这时候邻接矩阵对应下标和dst[]要更新元素的下标正好一致,都是从1开始编号。



4),Bellman-Ford算法(解决负权边,解决单源最短路径,前几种方法不能求含负权边的图)::时间复杂度O(nm),空间复杂度O(m)
主要思想:对所有的边进行n-1轮松弛操作,因为在一个含有n个顶点的图中,任意两点之间的最短路径最多包含n-1边。换句话说,第1轮在对所有的边进行松弛后,得到的是从1号顶点只能经过一条边到达其余各定点的最短路径长度。第2轮在对所有的边进行松弛后,得到的是从1号顶点只能经过两条边到达其余各定点的最短路径长度,......
以下是图示:


此外,Bellman_Ford还可以检测一个图是否含有负权回路:如果在进行n-1轮松弛后仍然存在dst[e[i]] > dst[s[i]]+w[i]。算法核心代码如下:

#define inf 999999999  
for(i = 1; i <= n; i++) dst[i] = inf;  
dst[1] = 0;  
for(k = 1; k <= n-1; k++){  
    for(i = 1; i <= m; i++){  
        if(dst[e[i]] > dst[s[i]] + w[i])  
            dst[e[i]] = dst[s[i]] + w[i];  
    }  
}  
//检测负权回路  
flag = 0;  
for(i = 1; i <= m; i++){  
    if(dst[e[i]] > dst[s[i]] + w[i])  
        flag = 1;  
}  
if(flag) cout << "此图含有负权回路";  

例1:对图示中含负权的有向图,输出从结点1到各结点的最短路径,并判断有无负权回路。

/***先输入n,m,分别表结点数和边数,之后输入m个三元组,各表起点,终点,边权,输出1号结点到各结点的最短路径****/  
#include   
#include   
using namespace std;  
#define nmax 1001  
#define inf 99999999  
int n, m, s[nmax], e[nmax], w[nmax], dst[nmax];  
int main(){  
    while(cin >> n >> m && n != 0 && m != 0){  
        int i, j;  
        //初始化三个数组:起点数组s[],终点数组e[],权值数组w[],最短路径数组dst[]  
        for(i = 1; i <= m; i++)  
            cin >> s[i] >> e[i] >> w[i];  
        for(i = 1; i <= n; i++)  
            dst[i] = inf;  
        dst[1] = 0;  
        //使用Bellman_Ford算法  
        for(j = 1; j <= n-1; j++){  
            for(i = 1; i <= m; i++){  
                if(dst[e[i]] > dst[s[i]] + w[i])  
                    dst[e[i]] = dst[s[i]] + w[i];  
            }  
        }  
        //测试是否有负权回路并输出  
        int flag = 0;  
        for(i = 1; i <= m; i++)  
            if(dst[e[i]] > dst[s[i]] + w[i])  
                flag = 1;  
        if(flag) cout << "此图含有负权回路\n";  
        else{  
            for(i = 1; i <= n; i++){  
                if(i == 1)  
                    cout << dst[i];  
                else   
                    cout << setw(3) << dst[i];  
            }  
            cout << endl;  
        }  
    }  
    return 0;  
}  
程序运行结果如下:


你可能感兴趣的:(#,图论,#,最短路径)