目录
一、在介绍去均值和归一化之前,先介绍几个概念
1.1 平均值
1.2 方差、标准差
1.3 贝赛尔修正
1.4 平均值与标准差的适用范围及误用
1.5 为什么正态分布非常常见
二、常用数据预处理方法
2.1 去均值
2.2 .两种归一化的适用范围
2.3 PCA/白化
平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为
以下面10个点的CPU使用率数据为例,其平均值为17.2。
14 31 16 19 26 14 14 14 11 13
方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为:
标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根:
为什么使用标准差?
一个标准差 68%, 两个标准差 95%, 三个标准差 99%。
标准差定义是总体各单位标准值( xi)与其平均数(μ)离差平方和的算术平均数的平方根。它反映组内个体间的离散程度。
所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。
标准计算公式:
假设有一组数值X₁,X₂,X₃,......Xn(皆为实数),其平均值(算术平均值)为μ,公式如图1。
标准差也被称为标准偏差,或者实验标准差,公式为
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差约为17.08分,B组的标准差约为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
一个标准差 68%, 两个标准差 95%, 三个标准差 99%。
与方差相比,使用标准差来表示数据点的离散程度有3个好处:
在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。不过,使用N所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1:
经过贝塞尔修正后的方差公式:
公式的选择
是否使用贝塞尔修正,是由数据集的性质来决定的:如果只想计算数据集本身的离散程度(population),那么就使用未经修正的公式;如果数据集是一个样本(sample),而想要计算的则是样本所表达对象的离散程度,那么就使用贝塞尔修正后的公式。在特殊情况下,如果该数据集相较总体而言是一个极大的样本 (比如一分钟内采集了十万次的IO数据) — 在这种情况下,该样本数据集不可能错过任何的异常值(outlier),此时可以使用未经修正的公式来计算总体数据的离散程度。
大多数统计学指标都有其适用范围,平均值、方差和标准差也不例外,其适用的数据集必须满足以下条件:
中部单峰:
数据集只存在一个峰值。很简单,以假想的CPU使用率数据为例,如果50%的数据点位于20附近,另外50%的数据点位于80附近(两个峰),那么计算得到的平均值约为50,而标准差约为31;这两个计算结果完全无法描述数据点的特征,反而具有误导性。
这个峰值必须大致位于数据集中部。还是以假想的CPU数据为例,如果80%的数据点位于20附近,剩下的20%数据随机分布于30~90之间,那么计算得到的平均值约为35,而标准差约为25;与之前一样,这两个计算结果不仅无法描述数据特征,反而会造成误导。
遗憾的是,在现实生活中,很多数据分布并不满足上述两个条件;因此,在使用平均值、方差和标准差的时候,必须谨慎小心。
如果数据集仅仅满足一个条件:单峰。那么,峰值在哪里?峰的宽带是多少?峰两边的数据对称性如何?有没有异常值(outlier)?为了回答这些问题,除了平均值、方差和标准差,需要更合适的工具和分析指标,而这,就是中位数、均方根、百分位数和四分差的意义所在。
整理内容来自这里→正态分布为什么常见
这里需要提到中心极限定理(central limit theorem)
在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。
可以看出,随着统计量个数的增加,它们和的平均值越来越符合正态分布。
正态分布只适合各种因素累加的情况,如果这些因素不是彼此独立的,会互相加强影响,那么就不是正态分布了。
如果各种因素对结果的影响不是相加,而是相乘,那么最终结果不是正态分布,而是对数正态分布(log normal distribution),即x的对数值log(x)满足正态分布。
也就是结果的对数值满足正态分布
相关参考:https://blog.csdn.net/zongzi13545329/article/details/84793959
各维度都减对应维度的均值,使得输入数据各个维度都中心化为0,进行去均值的原因是因为如果不去均值的话会容易拟合。 这是因为如果在神经网络中,特征值x比较大的时候,会导致W*x+b的结果也会很大,这样进行激活函数(如relu)输出时,会导致对应位置数值变化量太小,进行反向传播时因为要使用这里的梯度进行计算,所以会导致梯度消散问题,导致参数改变量很小,也就会易于拟合,效果不好。
右图为去均值之后的效果。
一种是最值归一化,比如把最大值归一化成1,最小值归一化成-1;或把最大值归一化成1,最小值归一化成0。适用于本来就分布在有限范围内的数据.另一种是均值方差归一化,一般是把均值归一化成0,方差归一化成1。适用于分布没有明显边界的情况。
进行归一化的原因是把各个特征的尺度控制在相同的范围内,这样可以便于找到最优解,不进行归一化时如左图,进行归一化后如右图,可发现能提高收敛效率,省事多了。
1.PCA是指通过抛弃携带信息量较少的维度,保留主要的特征信息来对数据进行降维处理,思路上是使用少数几个有代表性、互不相关的特征来代替原先的大量的、存在一定相关性的特征,从而加速机器学习进程。(降维技术可单独讲)
PCA可用于特征提取,数据压缩,去噪声,降维等操作。
2.白化的目的是去掉数据之间的相关联度和令方差均一化,由于图像中相邻像素之间具有很强的相关性,所以用于训练时很多输入是冗余的。这时候去相关的操作就可以采用白化操作,从而使得:
1.减少特征之间的相关性
2.特征具有相同的方差(协方差阵为1)
3.举个白化的例子,如对于两个特征的关联分布如左图,可以看出特征组合点存在线性关系,此时我们进行白化后(特征向量的投影)可以变成右图的形式,无关联性。
而且白化因为进行了方差均一化,所以还可以提升训练速度。
相关参考:
https://blog.csdn.net/maqunfi/article/details/82252480
https://www.cnblogs.com/quietwalk/p/8243536.html