动态规划——打家劫舍

打家劫舍1

class Solution {
     
public:
    int rob(vector<int>& nums) {
     
        int n = nums.size();
        if(n==0)    return 0;
        if(n==1)    return nums[0];
        vector<int> dp(n,0);
        dp[0] = nums[0];
        dp[1] = max(nums[0],nums[1]);
        for(int i=2;i<n;i++){
     
            dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
        }
        return dp[n-1];
    }
};
class Solution {
     
public:
    int rob(vector<int>& nums) {
     
		int pre2 = 0, pre1 = 0;
	    for (int i = 0; i < nums.length; i++) {
     
	        int cur = max(pre2 + nums[i], pre1);	//抢和不抢
	        pre2 = pre1;
	        pre1 = cur;
	    }
    return pre1;
    }
};

打家劫舍2

class Solution {
     
public:
    int rob(vector<int>& nums) {
     
       int n=nums.size();
       if(n==0) return 0;
       if(n==1) return nums[0];
       return max(robCri(nums,0,n-2),robCri(nums,1,n-1));	//关键
    }

    int robCri(vector<int>& nums,int start,int end){
     
        int pre=0,cur=0;
        for(int i=start;i<=end;i++){
     
            int temp = max(pre+nums[i],cur);
            pre = cur;
            cur = temp;
        }
        return cur;
    }
};

打家劫舍3

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
     
public:
    int rob(TreeNode* root) {
     
        vector<int> res=dfs(root);
        return max(res[0], res[1]);
    }

private:
    vector<int> dfs(TreeNode* root){
     
        if(root==NULL)  return {
     0,0};
        vector<int> res1(2,0);
        vector<int> left = dfs(root->left);
        vector<int> right=dfs(root->right);

        res1[0] = max(left[0],left[1])+max(right[0],right[1]);
        res1[1] = root->val + left[0] + right[0];
        return res1;
    }
};

你可能感兴趣的:(数据结构与算法总结,动态规划,leetcode)