DB2的olap函数详解(原创)

DB2 olap函数概述
在线分析处理函数(OLAP)是DB2中扩展了关系模型、使关系模型能够理解行集合内的排序方式的重要函数之一。典型的 DB2在线分析处理的格式包括两部分:函数部分和OVER表达式部分。
函数部分包括:ROW_NUMBER、RANK、DENSE_RANK、FIRST_VALUE、LAST_VALUE、LAG、LEAD、COUNT、MIN、MAX、AVG、SUM
over表达式部分在示例中进行介绍,这里不具体介绍语法
OLAP函数介绍

    SELECT  
        ROW_NUMBER() OVER(ORDER BY SALARY) AS 序号,  
        NAME AS 姓名,  
        DEPT AS 部门,  
        SALARY AS 工资  
    FROM  
    (  
        --姓名    部门  工资  
        VALUES  
        ('张三','市场部',4000),  
        ('赵红','技术部',2000),  
        ('李四','市场部',5000),  
        ('李白','技术部',5000),  
        ('王五','市场部',NULL),  
        ('王蓝','技术部',4000)  
    ) AS EMPLOY(NAME,DEPT,SALARY); 
查询结果如下:  
     
    序号       姓名       部门       工资  
    1     赵红       技术部    2000  
    2     张三       市场部    4000  
    3     王蓝       技术部    4000  
    4     李四       市场部    5000  
    5     李白       技术部    5000  
    6     王五       市场部    (null) 

很多人非常不理解,怎么两个函数能这么写呢?甚至有人怀疑上面的SQL语句是不是真的能执行。其实,ROW_NUMBER是个函数没错,它的作用从它的名字也可以看出来,就是给查询结果集编号。但是,OVER并不是一个函数,而是一个表达式,它的作用是定义一个作用域(或者可以说是结果集), 注意OVER前面的函数只对OVER定义的结果集起作用。

    SELECT 
        ROW_NUMBER() OVER() AS 序号, 
        ROW_NUMBER() OVER(PARTITION BY DEPT ORDER BY SALARY) AS 部门序号, 
        NAME AS 姓名, 
        DEPT AS 部门, 
        SALARY AS 工资, 
        AVG(SALARY) OVER(PARTITION BY DEPT) AS 部门平均工资, 
        AVG(SALARY) OVER() AS 全员平均工资 
    FROM 
    ( 
        --姓名    部门  工资 
        VALUES 
        ('张三','市场部',4000), 
        ('赵红','技术部',2000), 
        ('李四','市场部',5000), 
        ('李白','技术部',5000), 
        ('王五','市场部',NULL), 
        ('王蓝','技术部',4000) 
    ) AS EMPLOY(NAME,DEPT,SALARY); 
查询结果如下 :    
    序号       部门序号       姓名       部门       工资       部门平均工资       全员平均工资 
    1            1          张三       市场部    4000       4500                     4000 
    2            2          李四       市场部    5000       4500                     4000 
    3            3          王五       市场部    (null)     4500                     4000 
    4            1          赵红       技术部    2000       3666                     4000 
    5            2          王蓝       技术部    4000       3666                     4000 
    6            3          李白       技术部    5000       3666                     4000 

OVER是一个表达式,它的作用是定义一个作用域(或者可以说是结果集),OVER前面的函数只对OVER定义的结果集起作用。
ORDER BY的作用大家应该非常熟悉,用来对结果集排序。PARTITION BY的作用其实也很简单,和GROUP BY 的作用相同,用来对结果集分组。
到此为止,大家应该对OLAP函数的套路有一定的了解和体会了吧。如果结果集的列中存在null,当我们该列排序时,null会被作为无限大处理,如果我们想把控制null排序的位置呢?使用NULLS FIRST或者NULLS LAST即可,请看下面的SQL:

SELECT 
        ROW_NUMBER() OVER(ORDER BY SALARY desc NULLS FIRST) AS RN, 
        RANK() OVER(ORDER BY SALARY desc NULLS FIRST) AS RK, 
        DENSE_RANK() OVER(ORDER BY SALARY desc NULLS FIRST) AS D_RK, 
        NAME AS 姓名, 
        DEPT AS 部门, 
        SALARY AS 工资 
    FROM 
    ( 
        --姓名    部门  工资 
        VALUES 
        ('张三','市场部',4000), 
        ('赵红','技术部',2000), 
        ('李四','市场部',5000), 
        ('李白','技术部',5000), 
        ('王五','市场部',NULL), 
        ('王蓝','技术部',4000) 
    ) AS EMPLOY(NAME,DEPT,SALARY); 
    
查询结果如下:   

    RN  RK   D_RK     姓名       部门       工资 
    1     1     1     王五       市场部    (null) 
    2     2     2     李四       市场部    5000 
    3     2     2     李白       技术部    5000 
    4     4     3     张三       市场部    4000 
    5     4     3     王蓝       技术部    4000 
    6     6     4     赵红       技术部    2000 

请注意ROW_NUMBER和RANK之间的区别,RANK是等级,排名的意思,李四和李白的工资都是5000,他们并列排名第二。张三和王蓝的工资都是4000,怎么RANK函数的排名是第四,而DENSE_RANK的排名是第三呢?这正是这两个函数之间的区别。由于有两个第二名,所以RANK函数默认没有第三名。
现在又有个新问题,假设让你查询一下每个员工的工资以及工资小于他的所有员工的平均工资,该怎么办呢?请看下面的SQL:

SELECT 
        NAME AS 姓名, 
        SALARY AS 工资, 
        SUM(SALARY) OVER(ORDER BY SALARY NULLS FIRST ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS 小于本人工资的总额, 
        SUM(SALARY) OVER(ORDER BY SALARY NULLS FIRST ROWS BETWEEN  CURRENT ROW AND UNBOUNDED FOLLOWING) AS 大于本人工资的总额, 
        SUM(SALARY) OVER(ORDER BY SALARY NULLS FIRST ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS 工资总额1, 
        SUM(SALARY) OVER() AS 工资总额2 
    FROM 
    ( 
        --姓名    部门  工资 
        VALUES 
        ('张三','市场部',4000), 
        ('赵红','技术部',2000), 
        ('李四','市场部',5000), 
        ('李白','技术部',5000), 
        ('王五','市场部',NULL), 
        ('王蓝','技术部',4000) 
    ) AS EMPLOY(NAME,DEPT,SALARY);   
  
查询结果如下:     

    姓名       工资       小于本人工资的总额    大于本人工资的总额    工资总额1     工资总额2 
    王五       (null)     (null)             20000              20000            20000 
    赵红       2000       2000               20000              20000            20000 
    张三       4000       6000               18000              20000            20000 
    王蓝       4000       10000              14000              20000            20000 
    李四       5000       15000              10000              20000            20000 
    李白       5000       20000              5000               20000            20000 

上面SQL 中的OVER部分出现了一个ROWS子句,我们先来看一下ROWS子句的结构:
    ROWS BETWEEN <上限条件> AND <下限条件>    
    其中“上限条件”可以是如下关键字: 
    UNBOUNDED PRECEDING 
      PRECEDING 
    CURRENT ROW 
      
    “下线条件”可以是如下关键字: 
    CURRENT ROW 
    FOLLOWING 
    UNBOUNDED FOLLOWING 
注意,以上关键字都是相对当前行的,UNBOUNDED PRECEDING表示当前行前面的所有行,也就是说没有上限;  PRECEDING表示从当前行开始到它前面的行为止,例如,number=2,表示的是当前行前面的2行;CURRENT ROW表示当前行。
OVER表达式还可以有个子句,那就是RANGE,它的使用方式和ROWS 十分相似,或者说一模一样,作用也差多不,不过有点区别,如下所示:

RANGE BETWEEN <上限条件> AND <下限条件>
其中的<上限条件> 、<下限条件>和ROWS一模一样,如下的SQL演示它们之间的区别:
   
SELECT 
        NAME AS 姓名, 
        DEPT AS 部门, 
        SALARY AS 工资, 
        FIRST_VALUE(SALARY, 'IGNORE NULLS') OVER(PARTITION BY DEPT) AS 部门最低工资, 
        LAST_VALUE(SALARY, 'RESPECT NULLS') OVER(PARTITION BY DEPT) AS 部门最高工资, 
        SUM(SALARY) OVER(ORDER BY SALARY ROWS BETWEEN 1 PRECEDING  AND 1 FOLLOWING) AS ROWS, 
        SUM(SALARY) OVER(ORDER BY SALARY RANGE BETWEEN 500 PRECEDING AND 500 FOLLOWING) AS RANGE 
    FROM 
    ( 
        --姓名    部门  工资 
        VALUES 
        ('张三','市场部',2000), 
        ('赵红','技术部',2400), 
        ('李四','市场部',3000), 
        ('李白','技术部',3200), 
        ('王五','市场部',4000), 
        ('王蓝','技术部',5000) 
    ) AS EMPLOY(NAME,DEPT,SALARY); 
    
查询结果如下:      
   
姓名       部门       工资       部门最低工资       部门最高工资       ROWS    RANGE 
    张三       市场部    2000       2000              4000             4400       4400 
    赵红       技术部    2400       2400              5000             7400       4400 
    李四       市场部    3000       2000              4000             8600       6200 
    李白       技术部    3200       2400              5000             10200     6200 
    王五       市场部    4000       2000              4000             12200     4000 
    王蓝       技术部    5000       2400              5000             9000       5000 

上面SQL的RANGE子句的作用是定义一个工资范围,这个范围的上限是当前行的工资-500,下限是当前行工资+500。例如:李四的工资是3000,所以上限是3000-500=2500,下限是3000+500=3500,那么有谁的工资在2500-3500这个范围呢?只有李四和李白,所以RANGE列的值就是3000(李四)+3200(李白)=6200。以上就是ROWS和RANGE得区别。
上面的SQL 还用到了FIRST_VALUE和LAST_VALUE两个函数,它们的作用也非常简单,用来求OVER 定义集合的最小值和最大值。值得注意的是这两个函数有个参数,'IGNORE NULLS' 或 'RESPECT NULLS',它们的作用正如它们的名字一样,用来忽略NULL值和考虑NULL值。
还有两个函数我们没有介绍,LAG和LEAD,这两个函数的功能非常强大,请看下面SQL:
   
SELECT 
        NAME AS 姓名, 
        SALARY AS 工资, 
        LAG(SALARY,0) OVER(ORDER BY SALARY) AS LAG0, 
        LAG(SALARY) OVER(ORDER BY SALARY) AS LAG1, 
        LAG(SALARY,2) OVER(ORDER BY SALARY) AS LAG2, 
        LAG(SALARY,3,0,'IGNORE NULLS') OVER(ORDER BY SALARY) AS LAG3, 
        LAG(SALARY,4,-1,'RESPECT NULLS') OVER(ORDER BY SALARY) AS LAG4, 
        LEAD(SALARY) OVER(ORDER BY SALARY) AS LEAD 
    FROM 
    ( 
        --姓名    部门  工资 
        VALUES 
        ('张三','市场部',2000), 
        ('赵红','技术部',2400), 
        ('李四','市场部',3000), 
        ('李白','技术部',3200), 
        ('王五','市场部',4000), 
        ('王蓝','技术部',5000) 
    ) AS EMPLOY(NAME,DEPT,SALARY); 
    
查询结果如下:     
   
姓名       工资       LAG0      LAG1      LAG2      LAG3      LAG4      LEAD 
    张三       2000       2000      (null)   (null)       0       -1        2400 
    赵红       2400       2400       2000    (null)       0       -1        3000 
    李四       3000       3000       2400     2000       0        -1        3200 
    李白       3200       3200       3000     2400       2000     -1        4000 
    王五       4000       4000       3200     3000       2400     2000      5000 
    王蓝       5000       5000       4000     3200       3000     2400      (null) 

我们先来看一下LAG 和 LEAD 函数的声明,如下:
LAG(表达式或字段, 偏移量, 默认值, IGNORE NULLS或RESPECT NULLS)
LAG是向下偏移,LEAD是想上偏移,大家看一下上面SQL的查询结果就一目了然了。
函数 OVER(PARTITION BY 子句 ORDER BY 子句 ROWS或RANGE子句)

OLAP函数的应用

上文已经介绍了OLAP函数的基本使用方法,这里介绍OLAP函数的相关应用

    SELECT
        date AS 日期,
        tax AS 税收,
        sum(tax) OVER(partition BY year(date) order by month(date)) AS 当年累计税收,
        sum(tax) OVER() AS 全部税收
  FROM
    (
        --时间       税收
        VALUES
        ('01/01/2000',4000),
        ('02/01/2000',2000),
        ('03/01/2000',5000),
        ('04/01/2000',5000),
        ('01/01/2001',NULL),
        ('02/01/2001',4000)
    ) AS EMPLOY(date,tax); 

查询结果如下:
日期     税收    当年累计税收    全部税收

01/01/2000    4000    4000    20000
02/01/2000    2000    6000    20000
03/01/2000    5000    11000    20000
04/01/2000    5000    16000    20000
01/01/2001    [NULL]    [NULL]    20000
02/01/2001    4000    4000    20000

可以看到在进行聚集的集合中引入一个排序方式,DB2将不处理一个报告( reporting ) 函数,而是处理一个累加( cumulative )函数。累加函数是一种标量-聚集函数,它对当前行以及集合中当前行之前(相对排序方式而言)的所有行进行操作。这里,计算了以年份为界限每月税收的累加和。观察上面数据可以看到,计算到2011-01-01时,累计税收以2011-01-01的税收为起点,重新开始计算。
SELECT *
FROM ( select row_Number() over(order by id asc) as row_next,id ,name from staff ) AS A
WHERE ROW_next BETWEEN 3 AND 5;

取第三行到第五行

这种方法有如下,特点
对事务和性能的影响
在这种方法中,开发人员需要以编程的方式处理事务。如果去掉 row_next 子句( ROW_NEXT BETWEEN ? and ? ),那么将返回所有匹配选择标准的行。 上面使用的 SELECT * FROM 子句可以看作一个临时表,里面存有匹配选择标准的整个结果集,然后从这个临时表中返回落在给定行范围内的结果集。使用 rownumber() 功能时对系统会有额外的性能影响,因为数据库首先要获取所有匹配选择标准的行,然后再每次从结果集获取下一行记录时都得访问数据库,直到获得了给定范围内的所有行为止。因此,如果再使用这种方法的进行排序的同时有人进行了dml操作,则有可能出现取重的情况。
代码的可移植性 几乎所有的 RDBMS 系统都支持从结果集的开始部分或结尾部分获取任意数量的行,但是所使用的 SQL 语法却有所差异。因此,如果我们要更换数据库供应商,就不得不修改相应的查询。
提供无缝的后退按钮功能
如果我们的设计需要具有浏览器后退按钮功能,并且用户希望每次都能够查看最近的来自数据库的信息,那么这种设计可以提供一个可行的解决方案。其缺点是,对于每个结果页面,都可能需要访问数据库,这样就大大地影响了性能。
基本上,URL 查询都会有内嵌的搜索参数,这些参数用于提供给 SQL Query。例如,下面就是一个可能的 URL 查询:
http://localhost:8050/ProductSearch?minprize=50&maxprice=100&pagecount=20&resultsPerpage=10
当用户单击浏览器上的后退按钮时,将在浏览器中显示的前一个 URL 就是:
http://localhost:8050/ProductSearch?minprize=50&maxprice=100&pagecount=10&resultsPerpage=10
我们假设,在会话中提供了最近页面的 id。因此,可以像下面这样来跟踪浏览器后退按钮:
    if(!session.getAttribute("pageID).equalsIgnoreCase
      (request.getAttribute("pageCount")){
    //Then user has clicked the back button
    //Get possible search parameters, pagecount
    //and resultsPerPage from URL and formulate
    //a dynamic URL and post the information back
    //to the servlet.The URL would be
    http://localhost:8050/ProductSearch?minprize=50&
    maxprice=100&pagecount=10&resultsPerpage=10
    return;
    //Done display the results screen page
    }
通过使用这种方法,用户就可以查看数据库的最新信息。

关于olap函数的其他使用方法可以参考

http://www.searchdatabase.com.cn/ShowContent_9290.htm


参考至:http://www.cnblogs.com/Fskjb/archive/2011/02/28/1967429.html
      http://www.ibm.com/developerworks/cn/data/library/techarticles/0110lyle/0110lyle.html
      http://www.ibm.com/developerworks/cn/data/library/techarticles/0307balani/0307balani.html
      http://blog.csdn.net/andyxm/article/details/2795356

本文原创,转载请注明出处、作者

如有错误,欢迎指正

邮箱:[email protected]

你可能感兴趣的:(DB2日常管理)