- OpenCV中添加高斯噪声到彩色图像和点云
LpmShell
opencv人工智能计算机视觉点云
在计算机视觉和图像处理中,噪声是一种常见的现象,可以对图像和点云数据产生不良影响。高斯噪声是一种常见的噪声类型,它具有正态分布的特点。在本文中,我们将使用OpenCV库来添加高斯噪声到彩色图像和点云数据,并提供相应的源代码示例。添加高斯噪声到彩色图像首先,我们将介绍如何使用OpenCV库向彩色图像添加高斯噪声。以下是添加高斯噪声的步骤:步骤1:导入必要的库importnumpyasnpimport
- 基于Canny边缘检测和轮廓检测
如若123
opencv人工智能计算机视觉
这段代码实现了基于Canny边缘检测和轮廓检测,从图像中筛选出面积较大的矩形,并使用OpenCV和Matplotlib显示结果。主要流程如下:步骤详解:读取图像:img=cv2.imread('U:/1.png')使用cv2.imread()加载图像。转换为灰度图像:gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)使用cv2.cvtColor()将图像从BGR色彩
- 分形、大自然的分形几何、数据可视化、Python绘图
timedot-hj
python绘图指南-分形与数据可视化可视化python几何学算法
分形、大自然的分形几何、数据可视化、Python绘图中国传统中的『分形』大自然的分形几何数据可视化本系列采用turtle、matplotlib、numpy这三个Python工具,以分形与计算机图像处理的经典算法为实例,通过程序和图像,来帮助读者一步步掌握Python绘图和数据可视化的方法和技巧,并且让读者感受到“龙枝屈曲竞分形,瑰丽绮错千万状”的分形魅力。本系列共有八章,分别为海岸线有多长,基因与
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- OpenCV实战技术应用
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
10.0角点检测应用技术实现,使用SIFT算法进行特征点检测并绘制。结果:实现过程:解析过程:1.导入模块:importcv2:导入opencv库,用于图像处理操作,包括图像读取、特征提取、图像绘制、匹配等。importnumpyasnp:导入numpy库,用于处理数组数据,在特征描述符的存储和处理中可能会用到。2.函数定义:sift_tz():功能:使用SIFT算法进行特征点检测并绘制。实现:i
- 第四届先进材料与机械电子国际学术会议(ICAMM 2024)
2301_79125431
java
第四届先进材料与机械电子国际学术会议(ICAMM2024)【前三届均已见刊EI检索,检索信息均可查询!四大高校联合支持】2024年第四届先进材料与机械电子国际题解|字符串排序-golang最简洁最易懂解法packagemainimport("bufio""fmt&q题解|#数列求和#publicclassMain{publicstaticvoidmain(Str第四届图像处理与智能控制国际学术会议
- 4-2 计算机视觉-卷积神经网络-基本网络组件
沉睡的小卡比兽
AI基础知识cnn卷积核端到端训练计算机视觉卷积神经网络
1、为什么卷积核一般都是奇数?2、由哪些层组成了基本的卷积神经网络,作用分别是什么?3、卷积层和池化层有什么区别?4、什么是端到端学习end-to-end?1、为什么卷积核一般都是奇数?(1)保护位置信息:保证锚点刚好在中间,方便以模块中心为标准进行滑动卷积,避免了位置信息发生偏移(2)padding时的对称性:保证padding时图像的两边依然对齐(3)一些历史尝试的经验,如边缘检测等,还有pa
- Swin-Unet多分类:图像分割领域的强大工具
甄亚凌
Swin-Unet多分类:图像分割领域的强大工具【下载地址】Swin-Unet多分类资源文件介绍本仓库提供了一个名为“Swin-Unet多分类”的资源文件,该文件主要用于图像分割任务中的多分类问题。资源文件中包含了一个基于Swin-Unet模型的实现,旨在对图像进行多分类分割项目地址:https://gitcode.com/open-source-toolkit/32588项目介绍在图像处理和计算
- Python 实现 RGB 和 HSV 相互转换算法
传说里的故事
python算法开发语言
Python实现RGB和HSV相互转换算法在图像处理领域,RGB和HSV是两种最常用的颜色空间。RGB是红绿蓝三原色的组合,HSV是色调、饱和度和亮度的组合。在不同应用场景下,需要将RGB和HSV进行相互转换。下面给出Python实现RGB和HSV相互转换的算法,并附上完整的源码。首先,我们需要导入colorsys库。这个库提供了许多颜色空间的转换函数。接下来,我们定义RGBToHSV和HSVTo
- 【揭秘】图像算法工程师岗位如何进入?
认识祂
人工智能算法图像算法工程师
“图像算法工程师,主要专注于开发图像处理和计算机视觉算法,广泛应用于各行业。本文,我们来揭秘一下他们的日常工作,以及如何成为这一领域的专业人才。”01图像算法工程师的日常工作算法设计与开发图像算法工程师的核心任务是设计和开发算法,以解决特定的图像处理或计算机视觉问题。常见的任务包括:图像分类:使用卷积神经网络(CNN)对图像进行分类,常见算法如ResNet、VGG。目标检测:在图像中定位并标注物体
- 机器学习笔记 - 机器学习/深度学习实战案例合集
坐望云起
深度学习从入门到精通机器学习深度学习人工智能案例应用神经网络
一、简述如何学习机器学习/深度学习,理论和实践都很重要,理论上的内容需要看课程、读教材。但是实践需要自己动手,实践之后自然会对理论有更深入的理解。怎么实践?借用欧阳修《卖油翁》的话”无他,但手熟尔“。就是多看多写多跑。下面创建这个github的目的是为了存放一些图像处理/计算机视觉/机器学习/深度学习的示例代码集合,不定期会添加新的示例,可供参考。GitHub-bashendixie/ml_too
- Python自动化运维:一键掌控服务器的高效之道
蒙娜丽宁
Python杂谈运维python自动化
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在互联网和云计算高速发展的今天,服务器数量的指数增长使得手动运维和管理变得异常繁琐。Python凭借其强大的可读性和丰富的生态系统,成为实现自动化运维的理想语言。本文以“Python自动化运维:编写自动化脚本进行服务器管理”为主题,深入探讨了如何利用Py
- 【水果识别】SVM水果成熟检测系统(含苹果 香蕉 橙子)【含GUI Matlab源码 11052期】含报告
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
Matlab武动乾坤博客之家博主简介:985研究生,Matlab领域科研开发者;座右铭:行百里者,半于九十。代码获取方式:CSDNMatlab武动乾坤—代码获取方式更多Matlab图像处理仿真内容点击①Matlab图像处理(进阶版)⛳️关注CSDNMatlab武动乾坤,更多资源等你来!!⛄一、SVM水果成熟检测系统SVM(支持向量机)水果成熟检测系统的原理和流程如下:原理:1SVM是一种监督学习算
- 五款图片变清晰工具帮助你,轻松实现一键修复模糊图片
Ai工具分享
人工智能
在日常生活中,我们难免会遇到图片模糊的情况,无论是年代久远的老照片因分辨率不足而显得模糊,还是在拍摄瞬间因轻微手抖导致的画面不清晰,这些问题都大大影响了图片的观赏价值。那么,面对这些模糊的图片,我们该如何让它们重焕新生,变得清晰明朗呢?接下来,我们就来介绍五款出色的软件,它们具备强大的图像处理能力,能够帮助你轻松实现一键修复模糊图片,让你的珍贵记忆恢复原有的清晰与生动。一、牛学长图片修复工具牛学长
- 【Python】深入探讨Python中的单例模式:元类与装饰器实现方式分析与代码示例
蒙娜丽宁
Python杂谈python单例模式开发语言
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界单例模式(SingletonPattern)是一种常见的设计模式,它确保一个类只有一个实例,并提供一个全局访问点。在Python中,实现单例模式的方式多种多样,包括基于装饰器、元类和模块级别的单例实现。本文将详细探讨这些实现方式,并通过大量代码示例进行演
- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- 基于纵横交叉算法优化的最小交叉熵图像多阈值分割 python
图像算法打怪
图像分割算法python开发语言
基于纵横交叉算法优化的最小交叉熵图像多阈值分割python文章目录基于纵横交叉算法优化的最小交叉熵图像多阈值分割python1.最小交叉熵阈值分割原理2.基于纵横交叉优化的多阈值分割3.算法结果:4.参考文献:5.Python代码摘要:本文介绍基于最小交叉熵的图像分割,并且应用纵横交叉算法进行阈值寻优。1.最小交叉熵阈值分割原理1993年,Li等人将交叉熵的概念引入到图像处理领域,提出了基于一维灰
- 机器视觉在医疗影像分析中的应用:助力放射科医生精准诊断
人工智能专属驿站
大数据人工智能计算机视觉
在现代医疗领域,影像学检查如X光、CT扫描和MRI等是诊断疾病的重要手段。随着技术的不断发展,机器视觉算法在医疗影像分析中的应用日益广泛,为放射科医生提供了强大的辅助工具,极大地提高了诊断的准确性和效率。本文将探讨机器视觉在医疗影像分析中的具体应用及其对医疗诊断带来的变革。一、机器视觉算法简介机器视觉是一种模拟人类视觉的科学技术,通过图像处理、模式识别和计算机视觉等技术,使计算机能够“看”懂图像中
- matlab程序代编程写做代码图像处理BP神经网络机器深度学习python
matlabgoodboy
深度学习matlab图像处理
1.安装必要的库首先,确保你已经安装了必要的Python库。如果没有安装,请运行以下命令:bash复制代码pipinstallnumpymatplotlibtensorflowopencv-python2.图像预处理我们将使用OpenCV来加载和预处理图像数据。假设你有一个图像数据集,每个类别的图像存放在单独的文件夹中。python复制代码importosimportcv2importnumpya
- 每日读码1 Unity GL
hookby
每日读码unity
//一般在渲染函数里实现,比如:OnPostRender()/*相机后处理*/,OnRenderImage()/*图像处理*/voidOnRenderImage(RenderTexturesrc,RenderTexturedst){Vector3toRight=cameraTransform.right*halfHeight*aspect;Vector3toTop=cameraTransform.
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- 使用QT+OpenCV+C++完成一个简单的图像处理工具
17´
机器视觉Qtc++qtopencvc++图像处理
目录前言初始化UI界面qss样式表优化界面QImage和Mat的类型转换按钮功能实现读取图像处理图像保存图像最终效果前言本项目在QtCreator中编写,使用qmake来配置OpenCV库,具体配置方法请看这篇文章从0到机器视觉工程师(六):配置OpenCV和Qt环境-CSDN博客,UI界面使用代码的形式书写。接下来,让我们一起来完成这个项目吧。初始化UI界面代码boolMainWindow::I
- 简单线性插值去马赛克算法的Python实现
大DA_辉
ISP图像处理_pythonpython计算机视觉人工智能
在图像处理领域中,去马赛克(Demosaicing)是一项关键技术,用于从单色彩滤波阵列(CFA)图像恢复全彩图像。本文将介绍一种简单的线性插值去马赛克算法,并将其从MATLAB代码转换为Python代码。最终结果将展示如何从Bayer格式的图像数据恢复出RGB全彩图像。什么是马赛克图像?马赛克图像是一种通过在传感器上覆盖彩色滤光片阵列(CFA)生成的单通道图像。最常见的CFA模式是Bayer模式
- GAN在图像增强中的应用实战指南
码字仙子
本文还有配套的精品资源,点击获取简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。1
- 利用双分支CycleGAN进行图像数据的高效增强
jizhi-dataset
人工智能
随着人工智能技术的快速发展,图像数据处理变得越来越重要。为了提高图像数据的质量和可用性,我们需要采用高效的数据增强方法。双分支CycleGAN网络作为一种先进的图像处理技术,为我们提供了一种全新的解决方案。本文将详细介绍双分支CycleGAN的工作原理,并展示其在图像数据增强方面的实际效果。同时,我们也将讨论在实际应用过程中可能遇到的挑战以及如何解决这些问题。,,CycleGAN是一种用于图像到图
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- DICOM图像处理:深入解析DICOM彩色图像中的Planar配置及其对像素数据解析处理的实现
猿享天开
DICOM医学影像知识图像处理医学影像DICOMPlanar
引言在DICOM(DigitalImagingandCommunicationsinMedicine)标准中,彩色图像的存储与显示涉及多个关键属性,其中**PlanarConfiguration(平面配置)**属性(标签(0028,0006))尤为重要。当遇到彩色DICOM图像在浏览时被错误地分割为9张小图,而实际应显示为一张完整的图像的问题,很可能与PlanarConfiguration属性的解
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- 人工智能OpenCV计算机视觉技术
yzx991013
OpenCV基础全集opencv计算机视觉人工智能
5.3cand可调节边缘检测完整代码:importcv2importnumpyasnp#载入图像,并处理可能的读取错误img_original=cv2.imread('./image/lena.jpg')ifimg_originalisNone:print("无法读取图像文件")raiseSystemExit#创建可调整大小的窗口cv2.namedWindow('Canny',cv2.WINDOW
- OpenCV03-高级-滤波与增强
坐吃山猪
OpenCVopencv计算机视觉人工智能
OpenCV03-高级-滤波与增强文章目录OpenCV03-高级-滤波与增强1-OpenCV平滑滤波1.均值滤波(`cv2.blur()`)2.高斯滤波(`cv2.GaussianBlur()`)3.中值滤波(`cv2.medianBlur()`)4.双边滤波(`cv2.bilateralFilter()`)总结2-OpenCV边缘检测1.Sobel算子(`cv2.Sobel()`)2.Canny
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR