- K近邻算法_分类鸢尾花数据集
_feivirus_
算法机器学习和数学分类机器学习K近邻
importnumpyasnpimportpandasaspdfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccuracy_score1.数据预处理iris=load_iris()df=pd.DataFrame(data=ir
- 如何“选择不同的“?跨越 pandas 中的多个数据框列?
潮易
pandas
在pandas中,如果你想要选择不同的列,你可以使用DataFrame的loc属性和iloc属性的组合。loc属性是基于标签的,iloc属性则是基于索引的。如果你想要选择多个列,你只需要将它们放入一个列表即可。以下是一个代码示例:```pythonimportpandasaspd#创建一个数据框df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]
- 详解 Pandas 的 query 函数
文刀小桂
Pandaspandaspython开发语言
Pandas的query()方法能够使用字符串表达式来筛选DataFrame数据的行,类似于SQL的where子句importpandasaspddf=pd.DataFrame({"A":[1,3,5,6,7],"B":[11,10,9,8,12],"C":["hello","pandas","python","java","shell"],"D":["2024-02-01","2023-12-1
- 详解 Pandas 的 isin 用法
文刀小桂
Pandaspandaspython
Pandas的isin()方法可以判断数据值是否在某个数据集合中,若与集合中的某个值相等则返回True,反之返回False。importpandasaspddf=pd.DataFrame({"title":["one","two","three","four"],"type":["small","common","middle","large"],"num":[10,20,30,40]})#1.判
- groupby 中如何显示 tqdm 的进度条?
domodo2020
在循环时调用tqdm显示进度已经是一个常规操作,常见的方式是foriiintqdm(...):...while循环的情况类似,whileicntintqdm(range(n)):...icnt+=1这里记录没有显式循环时,在groupby中的用法:importpandasaspdimportnumpyasnpfromtqdmimporttqdmdf=pd.DataFrame(np.random.r
- 【Python】 写入Pandas DataFrame到CSV文件
civilpy
pythonpandas开发语言
基本原理Pandas是一个强大的Python数据分析库,它提供了许多用于数据处理和分析的功能。在处理数据时,我们经常需要将数据保存到文件中,以便后续使用或分享。CSV(Comma-SeparatedValues,逗号分隔值)文件是一种常见的数据交换格式,它以纯文本形式存储表格数据,每行表示一个数据记录,列之间用逗号分隔。DataFrame是Pandas中用于存储表格数据的主要数据结构。它类似于Ex
- Python酷库之旅-第三方库Pandas(115)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲506、pandas.DataFrame.rank方法506-1、语法506-2、参数506-3、功能506-4、返回值506-5、说明506-6、用法506-6-1、数据准备506-6-2、代码示例506-6-3、结果输出507、pandas.DataFrame.round方法507-1、语法507-2、参数507-3、功能507-4、返回值507-5、说明507-6、用法507
- pandas中的loc和iloc
白日与明月
python数据挖掘pandas
loc和iloc的比较.loc和.iloc是pandas提供的两种不同的索引方法,它们的主要区别在于索引数据的依据:.loc:基于标签的索引,使用DataFrame或Series的索引标签(即行名和列名)来获取数据。可以使用单个标签、标签列表、标签切片、布尔数组或者callable函数作为索引器。如果使用标签索引并且标签不存在,.loc会抛出一个KeyError。对于切片,包括两端的标签。.ilo
- pandas中loc和iloc的区别
林光虚霁晓
数据分析pandas
在Pandas中,loc和iloc是用于选择和过滤数据的两种主要方法,它们的区别在于使用的索引类型。1.loc:基于标签索引loc是基于行或列的标签(label)来选择数据。它可以按行或列的名称来访问数据,也可以通过布尔索引选择。支持的索引类型:行标签、列标签、布尔索引。语法:DataFrame.loc[row_indexer,column_indexer]示例importpandasaspd#创
- seurat自学笔记1.0 单细胞数据导入
Sanye2022
pythonpandas
Python读取.h5ad文件importanndataimportpandasaspdadata=anndata.read("/home/R/R_data/Seurat/PBMC10/output/adata.h5ad")#adata.X.todense()#将稀疏矩阵转成普通矩阵#X=pd.DataFrame(adata.X.todense())#cell_name=adata.obs.ind
- Pandas教程:详解Pandas数据清洗
旦莫
PythonPandaspythonpandas数据分析
目录1.引言2.Pandas基础2.1安装与导入2.2创建一个复杂的DataFrame3.数据清洗流程3.1处理缺失值3.1.1删除缺失值3.1.2填充缺失值3.2数据去重3.3数据类型转换4.数据处理与变换4.1添加与删除列4.2数据排序5.数据分组与聚合6.其他数据清洗方法6.1字符串处理6.2时间序列处理6.3数据类型转换1.引言数据清洗是数据科学和数据分析中的一个重要步骤,旨在提升数据的质
- python的pandas库
帅维维
pythonpandas开发语言
什么是pandasPandas是一个开源的第三方Python库,它从Numpy和Matplotlib的基础上构建而来,享有数据分析“三剑客之一”的盛名。Pandas已经成为Python数据分析的必备高级工具,目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。数据结构Pandas中除了Panel数据结构,还引入了两种新的数据结构——Series和DataFrame,这两种数据结构都建立在Nu
- Python数据框操作 -- DataFrame列名和索引设置
wodertianna
pythonpandas机器学习
先创建一个数据框:importpandasaspddf=pd.DataFrame({'a':[1,1,2,3,4],'b':[5,6,7,8,8]})重新设置数据框的列名,使数据框的列名为“A”和“B”:df.columns=['A','B'] 设置A列为数据框的索引:df1=df.set_index('A',drop=True) #drop=True表示不保留A列在数据框,drop=False
- Python DataFrame批量添加新列
愤怒的汽水
python基础知识机器学习
在处理数据的时候我想批量增加新的列,但是一般的情况下dataframe只能新增一个列(我查询了很多博客都是这么写的,我也没有找到好方法,本人愚钝,用创建新df和拼接的方法进行批量操作)本人错误的地方我会写在最后面,有时间的话可以看看共勉。df1=pd.DataFrame()#创建新DFdf1=df1.append([[1,2,3]])print
- Spark面试题
golove666
面试题大全spark大数据分布式面试
Spark面试题1.Spark基础概念1.1解释Spark是什么以及它的主要特点Spark是什么?Spark的主要特点1.2描述Spark运行时架构和组件主要的Spark架构组件:1.3讲述Spark中的弹性分布式数据集(RDD)和数据帧(DataFrame)弹性分布式数据集(RDD)主要特征:创建和转换:使用场景:数据帧(DataFrame)主要特征:创建和操作:使用场景:RDD与DataFra
- [python] 一个例子初步学习DataFrame _ 修改列名
Jean2257
pythonpythonDataFrame
例子:假设有4家公司,他们都在2个省份有自己的业务,用统计量v1,v2进行描述,现在需要对这些数据进行一定的分析.#-*-coding:utf-8-*-importpandasaspdlist1=[1,2,3,4,5,6,7,8]list4=[8,7,6,5,4,3,2,1]list2=['a','a','a','a','b','b','b','b']list3=['c1','c2','c3','
- Python DataFrame 给列命名
Python老吕
pythonpandas开发语言DataFrameDataFrame给列命名Python给列命名给列命名
PythonDataFrame给列命名PythonDataFrame给列命名一、在创建DataFrame时给列命名示例1:从字典创建DataFrame示例2:从列表的列表创建DataFrame,并指定列名示例3:从Series组成的字典创建DataFrame示例4:从具有默认索引的列表的列表创建DataFrame,并指定列名和行索引二、在读取数据时给列命名示例1:从CSV文件读取数据,并指定列名示
- python基础:pkl格式文件
Galaxy.404
Python基础python
一、pkl格式文件简介pkl格式文件,全称pickle,Python中一种用于序列化对象的文件格式。以字典(dict)、数据框(DataFrame)或任何其他数据类型的形式作为数据集使用的时候,可能希望将它们保存到文件中,以便以后可以使用它们或将它们发送给其他人。这就是Python的pickle模块的用途:它将对象序列化,以便将它们保存到文件中,并在以后再次加载到程序中。Pickling允许将py
- Python | 使用Pandas DataFrame时的内存泄漏问题及示例
python收藏家
python数据科学python
Pandas是一个功能强大且广泛使用的Python开源数据分析和操作库。它提供了一个DataFrame对象,允许您以非常直观的方式存储和操作行和列中的表格数据。PandasDataFrames是处理数据的强大工具,但如果不小心使用,它们也可能成为内存泄漏的来源。当程序分配了要使用的内存,但在不再需要时未能正确释放该内存时,就会发生内存泄漏。这可能会导致程序随着时间的推移使用越来越多的内存,从而可能
- 解决: ImportError: Missing optional dependency ‘openpyxl’. Use pip or conda to install openpyxl.
白舟的博客
抠脑问题pipconda
问题:使用代码时:importpandasaspd#替换为你的Excel文件路径excel_path='path_to_your_excel_file.xlsx'#使用pandas的read_excel函数读取Excel文件df=pd.read_excel(excel_path)#将DataFrame转换为数组data_array=df.values#打印数组print(data_array)然后
- pandas读取带有表头的数据文件,读取无表头的数据文件
小桥流水---人工智能
人工智能深度学习Python程序代码pandas
在Python中使用pandas库读取数据时,常见的问题之一就是如何处理数据文件中的表头。1.引入pandas库在开始之前,我们首先需要导入pandas库。如果你的环境中还未安装pandas,可以使用pip安装:pipinstallpandas导入pandas库:importpandasaspd2.读取带有表头的数据文件当数据文件中包含表头时,pandas会默认将第一行数据作为DataFrame的
- Python数据分析之pandas学习!
Python_trys
python数据分析pandas开发语言学习ide
Python中的pandas模块进行数据分析。接下来pandas介绍中将学习到如下8块内容:1、数据结构简介:DataFrame和Series2、数据索引index3、利用pandas查询数据4、利用pandas的DataFrames进行统计分析5、利用pandas实现SQL操作6、利用pandas进行缺失值的处理7、利用pandas实现Excel的数据透视表功能8、多层索引的使用在文章开始前打个
- pandas中的concat函数:详尽指南
小桥流水---人工智能
Python程序代码人工智能机器学习算法pandas
concat目录1.`concat`简介2.语法和参数3.连接DataFrame按行连接(axis=0)按列连接(axis=1)4.处理索引忽略索引使用键5.添加层次索引6.合并DataFrame7.最佳实践和提示8.结论concat函数是pandas库中一个强大的工具,用于沿特定轴连接多个DataFrame或Series对象。本指南将深入介绍concat函数,涵盖其语法、参数和实际示例。目录co
- Python Pandas将 DataFrame 转换为列表详解
Rocky006
pythonpandas开发语言数据分析
概要在数据分析和处理过程中,经常会使用到Pandas库来处理和操作数据。Pandas提供了灵活强大的数据结构DataFrame,它可以存储和处理各种类型的数据,并提供了丰富的方法和函数来进行数据操作。有时候,我们需要将DataFrame转换为列表形式,以便进一步处理或者与其他库进行集成。本文将详细介绍如何使用Pandas将DataFrame转换为列表,并提供丰富的示例代码来帮助读者更好地理解和应用
- Python酷库之旅-第三方库Pandas(112)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲491、pandas.DataFrame.cumsum方法491-1、语法491-2、参数491-3、功能491-4、返回值491-5、说明491-6、用法491-6-1、数据准备491-6-2、代码示例491-6-3、结果输出492、pandas.DataFrame.describe方法492-1、语法492-2、参数492-3、功能492-4、返回值492-5、说明492-6、
- Pandas 统计分析基础----教材知识(1)
Extrella_
pandas
目录Pandas中的结构数据SeriesDataFramePandas中的结构数据pandas的三种常用数据结构说明Series类似数组一种一维数组对象,包含一个值序列,并且包含数据标签,称为索引(index),通过索引来访问数组中的数据。DataFrame类似表格一个表格型的数据结构,它含有一组有序的列,每列可以是不同类型的值(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它
- Pandas 统计分析基础----教材知识(2)
Extrella_
pandas学习python
目录Pandas索引操作重建索引总结-----reindex的常用参数及其说明更换索引DataFrame数据的查询与编辑DataFrame数据的查询DataFrame数据的编辑Pandas数据运算算术运算Series相加/减/乘/除/求余/(**)DataFrame类型的数据相加/减/乘/除/求余/(**)函数应用与映射排序汇总与统计Pandas中常用的描述性统计方法Pandas索引操作重建索引说
- 使用Tkinter创建交互式表格:TkinterInterTable详解
蓬玮剑
使用Tkinter创建交互式表格:TkinterInterTable详解是一个Python库,它将TkinterGUI工具包与pandasDataFrame相结合,为开发者提供了一种简单、直观的方式来在图形界面中展示和操作数据表格。这个项目对于需要构建数据驱动的桌面应用,尤其是那些希望快速实现表格功能的开发者来说,是一个非常有价值的资源。技术分析TkinterInterTable基于Python的
- Python酷库之旅-第三方库Pandas(105)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲456、pandas.DataFrame.rdiv方法456-1、语法456-2、参数456-3、功能456-4、返回值456-5、说明456-6、用法456-6-1、数据准备456-6-2、代码示例456-6-3、结果输出457、pandas.DataFrame.rtruediv方法457-1、语法457-2、参数457-3、功能457-4、返回值457-5、说明457-6、用法
- Python酷库之旅-第三方库Pandas(107)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲466、pandas.DataFrame.eq方法466-1、语法466-2、参数466-3、功能466-4、返回值466-5、说明466-6、用法466-6-1、数据准备466-6-2、代码示例466-6-3、结果输出467、pandas.DataFrame.combine方法467-1、语法467-2、参数467-3、功能467-4、返回值467-5、说明467-6、用法467
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。