[BZOJ4650][NOI2016]优秀的拆分-后缀数组

优秀的拆分

Description

如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串,则我们称该字符串的这种拆分是优秀的。例如,对于字符串 aabaabaa,如果令 A=aabA=aab,B=aB=a,我们就找到了这个字符串拆分成 AABBAABB 的一种方式。一个字符串可能没有优秀的拆分,也可能存在不止一种优秀的拆分。比如我们令A=aA=a,B=baaB=baa,也可以用 AABBAABB 表示出上述字符串;但是,字符串 abaabaa 就没有优秀的拆分。现在给出一个长度为 nn 的字符串 SS,我们需要求出,在它所有子串的所有拆分方式中,优秀拆分的总个数。这里的子串是指字符串中连续的一段。以下事项需要注意:出现在不同位置的相同子串,我们认为是不同的子串,它们的优秀拆分均会被记入答案。在一个拆分中,允许出现 A=BA=B。例如 cccc 存在拆分 A=B=cA=B=c。字符串本身也是它的一个子串。

Input

每个输入文件包含多组数据。输入文件的第一行只有一个整数 TT,表示数据的组数。保证 1≤T≤101≤T≤10。接下来 TT 行,每行包含一个仅由英文小写字母构成的字符串 SS,意义如题所述。

Output

输出 TT 行,每行包含一个整数,表示字符串 SS 所有子串的所有拆分中,总共有多少个是优秀的拆分。

Sample Input

4
aabbbb
cccccc
aabaabaabaa
bbaabaababaaba

Sample Output

3
5
4
7

HINT

我们用 S[i,j]表示字符串 S第 i 个字符到第 j个字符的子串(从 1开始计数)。

第一组数据中,共有 3个子串存在优秀的拆分:
S[1,4]=aabb,优秀的拆分为 A=a,B=b;
S[3,6]=bbbb,优秀的拆分为 A=b,B=b;
S[1,6]=aabbbb,优秀的拆分为 A=a,B=bb。
而剩下的子串不存在优秀的拆分,所以第一组数据的答案是 3。

第二组数据中,有两类,总共 4 个子串存在优秀的拆分:
对于子串 S[1,4]=S[2,5]=S[3,6]=cccc,它们优秀的拆分相同,均为 A=c,B=c,但由于这些子串位置不同,因此要计算 3 次;
对于子串 S[1,6]=cccccc,它优秀的拆分有 2 种:A=c,B=cc 和 A=cc,B=c,它们是相同子串的不同拆分,也都要计入答案。
所以第二组数据的答案是 3+2=5。

第三组数据中,S[1,8] 和 S[4,11] 各有 2 种优秀的拆分,其中 S[1,8] 是问题描述中的例子,所以答案是 2+2=4。

第四组数据中,S[1,4],S[6,11],S[7,12],S[2,11],S[1,8] 各有 1种优秀的拆分,S[3,14] 有 2 种优秀的拆分,所以答案是 5+2=7。


真™优秀的拆分……
被m没有初始化这个小错误坑了一上午……

(╯#=皿=)╯~~╧═╧


思路:
为了求得答案,考虑求出两个数组 st[i] ed[i] ,表示以 i 开头和以 i 结尾的形如AA的字符串个数,那么每组方案都可以由一个st和一个ed组成。
那么答案便是 ni=1st[i+1]ed[i]

所以我们需要求出所有形如AA的串。
首先,为了防止重复,咱正着反着求一遍height,把每个AA串表示成两个后缀的公共前缀加两个前缀的公共后缀。
也就是这样:

   |<----|<---   //后缀的前缀
a b b a b b
-->|---->|       //前缀的后缀

那么,咱可以直接求出height后枚举A的长度 len ,每次枚举扫一遍整个序列,寻找后缀的最长公共前缀和前缀的最长公共后缀之和大于 len 的所有合法的串A,利用差分思想对st和ed打标记,最后前缀和一波并暴力统计答案即可(当然如果想写线段树也没问题)。

事实上思路很简单粗暴,但咱硬是调了一上午……

#include
#include
#include
#include
#include

using namespace std;

const int N=300009;

int n,m;
int logs[N],st[N],ed[N];
int wa[N],wb[N],wc[N];

inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0' || '9'if(ch=='-')f=-1;ch=getchar();}
    while('0'<=ch && ch<='9'){x=x*10+(ch^48);ch=getchar();}
    return x*f;
}

inline void out(int *target,int l,int r,const char *info="NULL")
{
    printf("%s:",info);
    for(int i=l;i<=r;i++)
        printf("%2d ",target[i]);
    puts("");
}

struct Suffix_Array
{
    char r[N];
    int sa[N],rk[N],hei[N][19];

    inline void biu()
    {
        int *x=wa,*y=wb;

        for(int i=1;i<=m;i++)
            wc[i]=0;
        for(int i=1;i<=n;i++)
            wc[x[i]=r[i]]++;
        for(int i=1;i<=m;i++)
            wc[i]+=wc[i-1];
        for(int i=n;i>=1;i--)
            sa[wc[x[i]]--]=i;

        for(int j=1,p=1;j<=n;j<<=1)
        {
            p=0;
            for(int i=n-j+1;i<=n;i++)
                y[++p]=i;
            for(int i=1;i<=n;i++)
                if(sa[i]>j)
                    y[++p]=sa[i]-j;

            for(int i=1;i<=m;i++)
                wc[i]=0;
            for(int i=1;i<=n;i++)
                wc[x[i]]++;
            for(int i=1;i<=m;i++)
                wc[i]+=wc[i-1];
            for(int i=n;i>=1;i--)
                sa[wc[x[y[i]]]--]=y[i];

            p=1;
            swap(x,y);
            x[sa[1]]=1;

            for(int i=2;i<=n;i++)
                if(y[sa[i-1]]==y[sa[i]] && y[sa[i-1]+j]==y[sa[i]+j])
                    x[sa[i]]=p;
                else
                    x[sa[i]]=++p;

            if(p>=n)
                break;
            m=p;
        }

        for(int i=1;i<=n;i++)
            rk[sa[i]]=i;

        int k=0;
        for(int i=1;i<=n;i++)
        {
            if(k)k--;
            int j=sa[rk[i]+1];

            if(rk[i]==n)continue;

            while(r[i+k]==r[j+k])
                k++;
            hei[rk[i]][0]=k;
        }
    }

    inline void init()
    {
        memset(wa,0,sizeof(wa));
        memset(wb,0,sizeof(wb));
        memset(wc,0,sizeof(wc));
        m='z'+9;
    }

    inline void pre()
    {
        for(int i=1,t=1;(1<1<for(int j=1;j+t<=n;j++)
                hei[j][i]=min(hei[j][i-1],hei[j+(1<1)][i-1]);
    }

    inline int lcp(int x,int y)
    {
        x=rk[x];y=rk[y];
        if(x>y)
            swap(x,y);

        int k=logs[y-x];
        return min(hei[x][k],hei[y-(1<inline void out()
    {
        for(int i=1;i<=n;i++)
            printf("%d ",hei[i][2]);
        puts("");
    }
}koishi,satori;

inline void init()
{
    for(int i=2;i<=N-3;i++)
        logs[i]=logs[i>>1]+1;
}

int main()
{
    init();

    int t;
    char ch[N];
    scanf("%d",&t);

    while(t--)
    {
        memset(st,0,sizeof(st));
        memset(ed,0,sizeof(ed));

        scanf("%s",koishi.r+1);
        n=strlen(koishi.r+1);

        for(int i=1;i<=n;i++)
            satori.r[i]=koishi.r[n-i+1];

        koishi.init();
        koishi.biu();
        koishi.pre();

        satori.init();
        satori.biu();
        satori.pre();

        for(int l=1,e=(n>>1);l<=e;l++)
            for(int i=l,j=l+i,x,y;j<=n;i+=l,j+=l)
            {
                x=min(koishi.lcp(i,j),l),y=min(satori.lcp(n-i+2,n-j+2),l-1);
                int tmp=x+y-l+1;

                if(x+y>=l)
                {
                    st[i-y]++;st[i-y+tmp]--;
                    ed[j+x-tmp]++;ed[j+x]--;
                }
            }

        for(int i=1;i<=n;i++)
            st[i]+=st[i-1],ed[i]+=ed[i-1];

        long long ans=0;
        for(int i=1;i<=n;i++)
            ans+=(long long)st[i+1]*(long long)ed[i];

        printf("%lld\n",ans);
    }

    return 0;
}

你可能感兴趣的:(后缀数组,【Suffix,Array】)