动态规划——最长子序列

动态规划法

经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。

为了节约重复求相同子问题的时间,引入一个表(数组)记录所有已解决的子问题的答案,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

【问题】 求两字符序列的最长公共字符子序列

问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1,序列Y=“y0,y1,…,yk-1X的子序列,存在X的一个严格递增下标序列,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1B=“b0,b1,…,bm-1,并Z=“z0,z1,…,zk-1为它们的最长公共子序列。不难证明有以下性质:

(1如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2是“a0,a1,…,am-2和“b0,b1,…,bn-2的一个最长公共子序列;

(2如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1是“a0,a1,…,am-2和“b0,b1,…,bn-1的一个最长公共子序列;

(3如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1是“a0,a1,…,am-1和“b0,b1,…,bn-2的一个最长公共子序列。

这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2和“b0,b1,…,bm-2的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2和“b0,b1,…,bn-1的一个最长公共子序列和找出“a0,a1,…,am-1和“b0,b1,…,bn-2的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。

 

 

求解:

引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:


recursive formula

动态规划的一个重要性质特点就是解决“子问题重叠”的场景,可以有效的避免重复计算,根据上面的公式其实可以发现C[i,j]一直保存着当前(Xi,Yi)的最大子序列长度。

当遇到相等的元素时,长度加1;遇到不相等的时,C[i][j]依然记录着最近相等时的那次记录:因此C[i][j]记录的是最新的最大子序列的长度。从下图也可以看出这种记录方式整体上是向右下方更新长度的,保证了序列长度是递增的。

回溯输出最长公共子序列过程:

flow


从图中可以看出当上方和左边的值不相等时,向斜上方移动;当上(左)值相等的时,向上(或左)移动,可以看出当上和左都相等时,有多条回溯路线

 

算法分析:
由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m + n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m + n)。

 

 

代码:

 

#include <stdio.h>
#include 
<string.h>
#define MAXLEN 100

void LCSLength(char *x, char *y, int m, int n, int c[][MAXLEN], int b[][MAXLEN])
{
    
int i, j;
    
    
for(i = 0; i <= m; i++)
        c[i][
0= 0;
    
for(j = 1; j <= n; j++)
        c[
0][j] = 0;
    
for(i = 1; i<= m; i++)
    
{
        
for(j = 1; j <= n; j++)
        
{
            
if(x[i-1== y[j-1])
            
{
                c[i][j] 
= c[i-1][j-1+ 1;
                b[i][j] 
= 0;
            }

            
else if(c[i-1][j] >= c[i][j-1])  //比较C中的左方和上方的值,记录其中的大者
            
{
                c[i][j] 
= c[i-1][j];
                b[i][j] 
= 1;
            }

            
else
            
{
                c[i][j] 
= c[i][j-1];
                b[i][j] 
= -1;
            }

        }

    }

}


void PrintLCS(int b[][MAXLEN], char *x, int i, int j)
{
    
if(i == 0 || j == 0)
        
return;
    
if(b[i][j] == 0)
    
{
        PrintLCS(b, x, i
-1, j-1);
        printf(
"%c ", x[i-1]);
    }

    
else if(b[i][j] == 1)
        PrintLCS(b, x, i
-1, j);
    
else
        PrintLCS(b, x, i, j
-1);
}


int main(int argc, char **argv)
{
    
char x[MAXLEN] = {"ABCBDAB"};
    
char y[MAXLEN] = {"BDCABA"};
    
int b[MAXLEN][MAXLEN];
    
int c[MAXLEN][MAXLEN];
    
int m, n;
    
    m 
= strlen(x);
    n 
= strlen(y);
    
    LCSLength(x, y, m, n, c, b);
    PrintLCS(b, x, m, n);
    
    
return 0;
}


参考:http://blog.csdn.net/yysdsyl/article/details/4226630

你可能感兴趣的:(算法,最长子序列,动态规划)