- 【Leetcode 热题 100】300. 最长递增子序列
冠位观测者
LeetcodeTop100Likedleetcode算法数据结构
问题背景给你一个整数数组numsnumsnums,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7][3,6,2,7][3,6,2,7]是数组[0,3,1,6,2,2,7][0,3,1,6,2,2,7][0,3,1,6,2,2,7]的子序列。数据约束1≤nums.length≤25001\lenums.len
- 代码随想录算法训练营第三十七天-动态规划-完全背包-理论基础
taoyong001
算法动态规划c++leetcode
完全背包与01背包根本区别就是物品的数量完全背包,物品的数量是无限的,可以任意取多个01背包物品的数量则只有一个遍历顺序01背包的一维滚动数组必须要从后向前遍历,这是防止一个物品被多次加入背包中而完全背包就是要多次加入物品,所以遍历自然而然就变成正序遍历了for(intj=weight[i];j<=capacityOfCurrentBag;++j)因为是二层遍历,且这两层遍历可以交换可以交换的本质
- 代码随想录算法训练营第三十六天-动态规划-474.一和零
taoyong001
算法动态规划c++leetcode
背包问题本身就已经够反思维的了,竟然物品会有两个维度的情况,这是闹哪样?题目要求是最大子集的个数题目中的mmm和nnn可以类比为容器,要装潢这个容器,最多要多少个元素的个数,就是结果,这个容器最多有mmm个0,nnn个1这个容器相当于一个背包,这个背包是有两个维度,最多有mmm个0,nnn个1,装潢这个背包最多需要多少个物品给出的数据集就是物品这是一道01背包问题动规五部曲这里要使用一个二维的动规
- 深入解析华为OD机试:开放日活动“取出尽量少的球”题解及C++、Java、JavaScript、Python详细实现
m0_57781768
华为odc++java
深入解析华为OD机试:开放日活动“取出尽量少的球”题解及C++、Java、JavaScript、Python详细实现在华为OD机试的算法考题中,字符串处理、动态规划、二分查找等算法问题都频繁出现。这不仅是为了考查面试者的算法基础,还要求能够通过高效的逻辑思维解决问题。今天我们将深度分析一道关于“取出尽量少的球”的题目,并通过C++、Java、JavaScript、Python四种编程语言详细解析和
- 奇怪的比赛(Python,递归,状态压缩动态规划dp)
不染_是非
python算法python动态规划算法蓝桥杯
目录前言:题目:思路:递归:代码及详细注释:状态压缩dp:代码及详细注释:总结:前言:这道题原本是蓝桥上的题,现在搜不到了,网上关于此题的讲解更是寥寥无几,仅有的讲解也只是递归思想,python讲解和状态压缩dp的解决方法都没有,这里就带大家用状态压缩dp方法来解决此题。题目:大奖赛计分规则:每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了,则扣掉与题号
- LeetCode HOT-100 分类总结
悬浮海
#LeetCodeHOT100leetcode算法HOT-100分类总结
文章目录二分搜索排序滑动窗口哈希表位运算前缀和双指针图二叉树回溯贪心:动态规划:背包问题:单调栈(辅助栈):并查集LRU缓存小技巧二分搜索【NO.4】LeetCodeHOT100—4.寻找两个正序数组的中位数【NO.17】LeetCodeHOT100—33.搜索旋转排序数组【NO.18】LeetCodeHOT100—34.在排序数组中查找元素的第一个和最后一个位置排序排序方法,如果可以确定数值的范
- 动态规划与一维数组
debug_running_Hu
动态规划算法
动态规划与一维数组的结合主要用于解决那些状态可以由单个变量表示的问题。这通常意味着问题具有某种线性或单调递增的性质。一维数组dp[i]存储的是到达状态i的最优解。状态i的最优解通常依赖于它之前状态(0到i-1)的最优解。让我们通过几个例子来详细讲解:1.斐波那契数列:这是动态规划中最经典的例子之一。斐波那契数列的第n项定义为前两项之和:F(n)=F(n-1)+F(n-2),其中F(0)=0,F(1
- 动态规划与回溯算法融合【高效解决组合、排列与子集问题】
一键难忘
算法之翼算法动态规划代理模式
本文收录于专栏:算法之翼动态规划与回溯算法融合【高效解决组合、排列与子集问题】动态规划(DynamicProgramming)和回溯算法(Backtracking)是解决复杂问题的两种重要算法。它们在许多问题中表现出色,但当两者结合使用时,能够更高效地解决一些特定类型的问题,如子集、排列和组合问题。这篇文章将探讨动态规划与回溯算法的结合,并通过代码实例展示如何应用这种结合方法解决实际问题。动态规划
- C语言青蛙跳台阶问题
共享家9527
c语言
在算法学习中,青蛙跳台阶问题是一个经典的递归和动态规划入门案例。它通过简单的场景,揭示了复杂的算法思想,非常适合初学者理解递归与动态规划的核心概念。一、问题描述一只青蛙要跳上n级台阶,每次它可以跳1级或者2级台阶。那么,青蛙跳上n级台阶总共有多少种不同的跳法呢?二、解题思路递归思路:-对于第n级台阶,青蛙到达它的方式要么是从第n-1级台阶跳1级上来,要么是从第n-2级台阶跳2级上来。-所以,跳上n
- 2023年数学建模动态规划算法在最短路径问题中的应用:以Floyd算法为例
人工智能_SYBH
算法matlab数据结构动态规划
订阅专栏后9月比赛期间会分享思路及Matlab代码数学建模是将实际问题抽象化为数学问题,并采用数学工具和技巧进行求解的过程。在实际应用中,数学建模是解决问题的一种有效方法。本文将介绍Floyd算法在数学建模中的应用。Floyd算法是解决最短路径问题的一种经典动态规划算法。最短路径问题是指在一个加权有向图中,从一个源节点到其他各节点的最短路径问题。在实际应用中,最短路径问题广泛应用于交通运输、通信网
- 动态规划详解-最小路径和问题【python】
数据分析螺丝钉
LeetCode刷题与模拟面试动态规划算法leetcodepython数据结构
作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。会一些的技术:数据分析、算法、SQL、大数据相关、python欢迎加入社区:码上找工作作者专栏每日更新:LeetCode解锁1000题:打怪升级之旅python数据分析可视化:企业实战案例备注说明:方便大家阅读,统一使用python,带必要注释,公众号数据分析螺丝钉一起打怪升级1.问题介绍和应用场景最小路径和问题是一个常见的动态规划问
- 数据结构与算法再探(六)动态规划
刀客123
数据结构与算法动态规划算法
目录动态规划(DynamicProgramming,DP)动态规划的基本思想动态规划的核心概念动态规划的实现步骤动态规划实例1、爬楼梯c++递归(超时)需要使用记忆化递归循环2、打家劫舍3、最小路径和4、完全平方数5、最长公共子序列6、0-1背包问题总结动态规划(DynamicProgramming,DP)释义:动态规划是一种解决复杂问题的优化方法,通过将大问题拆解成小问题,逐步解决小问题,最终得
- 【算法】动态规划:从斐波那契数列到背包问题
杰九
优质文章算法动态规划
【算法】动态规划:从斐波那契数列到背包问题文章目录【算法】动态规划:从斐波那契数列到背包问题1.斐波那契数列2.爬楼梯3.零钱转换Python代码4.零钱兑换II5.组合数dp和排列数dp6.为什么动态规划的核心思想计算组合数的正确方法代码实现为什么先遍历硬币再遍历金额可以计算组合数详细解释举例说明最终结果具体组合情况为什么有效7.背包问题01背包问题定义完全背包问题定义示例为什么需要倒序遍历8.
- 【Day24 LeetCode】贪心Ⅱ
银河梦想家
leetcode算法
一、贪心Ⅱ1、买卖股票的最佳时机II122这题第一想法是使用动态规划做,每天有两个状态,持有股票和非持有股票,每次计算这两个状态下的最优值。classSolution{public:intmaxProfit(vector&prices){//表示当前没有/有股票的两个状态intdp0=0,dp1=-prices[0];for(inti=1;i&prices){intans=0;for(inti=1
- (C++)P1216数字三角形(动态规划)⭐⭐⭐⭐
*TQK*
算法练习c++动态规划
[USACO1.5][IOI1994]数字三角形NumberTriangles-洛谷题目描述观察下面的数字金字塔。写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。在上面的样例中,从7→3→8→7→5的路径产生了最大权值。输入格式第一个行一个正整数r,表示行的数目。后面每行为这个数字金字塔特定行包含的整数。输出格式单独的一行,包含
- 动态规划汇总5
get_zhang_
动态规划子串子序列动态规划算法开发语言leetcode
1.最长递增子序列力扣题目链接(opensnewwindow)给你一个整数数组nums,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]是数组[0,3,1,6,2,2,7]的子序列。示例1:输入:nums=[10,9,2,5,3,7,101,18]输出:4解释:最长递增子序列是[2,3,7,101],因此长
- 数据结构与算法:动态规划dp:理论基础和相关力扣题(509.斐波那契数列、70.爬楼梯、62. 不同路径、63.不同路径Ⅱ、343.整数拆分)
shanshandeisu
数据结构与算法LeetCode动态规划leetcode算法dp力扣数据结构
1.0.理论基础动态规划主要解决的问题种类有:背包问题打家劫舍股票问题子序列问题解决步骤:dp数组及其下标的意义递推公式dp数组初始化遍历顺序打印dp数组2.0.相关力扣题509.斐波那契数列classSolution:deffib(self,n:int)->int:ifn==0:return0ifn==1:return1dp=[0]*35dp[1]=1foriinrange(2,31):dp[i
- 高效使用Alibaba Cloud PAI EAS进行AI模型推理
sagvWSRJHMNEB
人工智能深度学习神经网络python
技术背景介绍在当今的AI模型开发中,高效的推理服务是将训练好的模型投入实际应用的关键环节。AlibabaCloudPAI平台专为企业级AI开发提供了一整套服务,其中的PAI-EAS(ElasticAlgorithmService)是用于模型推理和部署的高性能服务。它支持多种硬件资源,能够在高吞吐量和低延迟环境下运行复杂模型,并提供灵活的弹性扩展和全面的运维监控系统。核心原理解析PAI-EAS通过结
- 最多获得的短信条数_云短信平台优惠活动_200分_A卷_动态规划
bug小王爷
华为OD机试真题(JavaA卷+B卷)动态规划华为od华为java
最多获得的短信条数_云短信平台优惠活动题目描述:某云短信厂商,为庆祝国庆,推出充值优惠活动。现在给出客户预算,和优惠售价序列,求最多可获得的短信总条数。输入输出描述:输入描述: 第一行客户预算M,其中0≤M≤10^6 第二行给出售价表,P1,P2,…Pn,其中1≤n≤100, Pi为充值i元获得的短信条数。 1≤Pi≤1000,1≤n≤100输出描述: 最多获得的短信条数示例1:输入:6
- 动态规划(Dynamic Programming,简称 DP)
佛渡红尘
计算机应用与算法动态规划代理模式算法
动态规划(DynamicProgramming,简称DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。通过保存和重用已经解决的子问题的解,来避免重复计算,从而大大提高了算法的效率。动态规划的基本思想是将一个复杂的问题分解为若干个相对简单的子问题,通过求解子问题,并将这些子问题的解保存起
- 题目:解码方法(来自leetcode)动态规划----斐波那契模型
清风逸梦
leetcode动态规划算法
解码方法题目动态规划(5步走)状态表示状态转移方程初始化填表顺序返回值代码题目链接题目动态规划(5步走)状态表示dp[i]表示为从下标i之前的的解码数。状态转移方程以i位置为终点,下标为i的位置有两种方式:第一种就是单独解码,第二种就是与前面的一位数合并解码。单独解码有分两种情况:第一种是:当s[i]在[1,9]时可以单独解码,就相当于在dp[i-1]种情况后接上一个单独解码,所以dp[i]=dp
- 蓝桥杯Python组最后几天冲刺———吐血总结,练题总结,很管用我学会了
晚风时亦鹿
学习笔记Python算法笔记python
一、重要知识要点1、穷举法2、枚举法3、动态规划4、回溯法5、图论6、深度优先搜索(DFS)7、广度优先搜索(BFS)8、二叉树9、递归10、分治法、矩阵法11、排列组合12、素数、质数、水仙花数13、欧几里得定理gcd14、求最大公约数、最小公倍数15、海伦公式(求三角形面积)16、博弈论17、贪心18、二分查找法19、hash表20、日期计算21、矩形快速幂22、树形DP23、最短路径24、最
- Python 最最最使用的动态规划入门教程 + 10道经典例题
我是阿核
Python动态规划算法pythonleetcode
不多废话,直接开讲动态规划三大步骤动态规划是一种将问题分解为若干个子问题,并存储这些子问题的解(通常使用数组或矩阵等数据结构),以便在后续计算中重复使用,从而避免了重复计算,提高了算法的效率。需要注意的是,动态规划并非一种特定的算法,而是一种解决问题的思想和方法。在实际应用中,需要根据具体问题的特点来设计合适的动态规划算法。动态规划的根本在于用已知项的求出未知项,并再次调用已经求出的未知项来解决更
- 动态规划,蒙特卡洛,TD,Qlearing,Sars,DQN,REINFORCE算法对比
青椒大仙KI11
动态规划算法机器学习深度学习
动态规划(DynamicProgramming,DP)通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划的步骤识别子问题:定义问题的递归解法,识别状态和选择。确定DP数组:确定存储子问题解的数据结构,通常是数组或矩阵。确定状态转移方程:找出状态之间的关系,即状态转移方程。边界条件:确定DP数组的初始值或边界条件。填表:按照顺序填入DP表,通常是从最小的子问题开始。构造最优解:根据
- C++爬楼梯——dfs、递归、动态规划、递推
*TQK*
编程语言知识点算法练习数据结构c++算法
什么是动态规划:给定一个问题,我们把他拆成一个个子问题,直到子问题可以直接解决。然后把子问题的答案保存起来,以减少重复计算。再根据子问题的答案反推,得出原问题解的一种方法递归的过程:"递"的过程是分解子问题的过程;(dfs是第归的一种)“归”的过程是产生答案的过程。“递”的过程是自顶向下。“归”的过程是自底向上,“底”代表的是已知最小子问题的答案递归适用于以下情况:1.问题具有递归结构:问题可以自
- [前端算法]动态规划
摇光93
算法算法动态规划
最优子结构,重叠子问题爬楼梯递归+记忆化搜索自顶向下varclimbStairs=function(n){letmap=[]functiondfs(n){if(n=coins[j]){dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);}}}if(dp[amount]===Infinity){return-1;}returndp[amount];}01背包问题functi
- 贪心与动规(动态规划)
programming expert
动态规划算法
1.贪心与动规的区别贪心算法和动态规划的主要区别在于它们解决问题的方式、能否保证得到最优解以及算法复杂度。解决问题的方式:贪心算法:在每一步选择中都采取当前状态下最优的选择,从而希望导致结果是全局最优的。它通常不考虑未来后果,只关注当前的最优解。动态规划:将原问题分解为子问题,通过解决子问题,并将子问题的解存储下来(通常是存储在一个表格中),在解决原问题时利用这些子问题的解。它通常以自底向
- 程序设计思考:归零思想
hookby
程序设计
“归零思想”是一种在程序设计中常用的思考方法,主要指的是通过将某些值或状态归零,来简化问题或解决复杂度。这个思想在许多领域中都可以找到应用,尤其是在处理问题时需要清理和重置状态,避免累积错误或多余的计算。下面是几个典型的应用场景:1.状态重置在某些算法中,特别是动态规划、回溯、递归等问题中,我们可能需要在每个阶段重置某些变量或状态,防止它们影响后续的计算。例如,在递归算法中,递归结束后可以通过将某
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo