78. Subsets ,90. Subsets II(待研究)---位运算法(重要和Combination Sum一系列的题目类似)

第一题、78. Subsets
Given a set of distinct integers, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
方法一、回溯法

vector<vector<int>> subsets(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        vector<vector<int>> subs;
        vector<int> sub;  
        genSubsets(nums, 0, sub, subs);
        return subs; 
    }
    void genSubsets(vector<int>& nums, int start, vector<int>& sub, vector<vector<int>>& subs) {//注意参数为引用,不然上层函数返回仍然为空
        subs.push_back(sub);
        for (int i = start; i < nums.size(); i++) {
            sub.push_back(nums[i]);
            genSubsets(nums, i + 1, sub, subs);//递归
            sub.pop_back();
        }
    }

方法二、迭代法
This problem can also be solved iteratively. Take [1, 2, 3] in the problem statement as an example. The process of generating all the subsets is like:

Initially: [[]]
Adding the first number to all the existed subsets: [[], [1]];
Adding the second number to all the existed subsets: [[], [1], [2], [1, 2]];
Adding the third number to all the existed subsets: [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]].

vector<vector<int>> subsets(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        vector<vector<int>> subs(1, vector<int>());
        for (int i = 0; i < nums.size(); i++) {
            int n = subs.size();
            for (int j = 0; j < n; j++) {
                subs.push_back(subs[j]); 
                subs.back().push_back(nums[i]);
            }
        }
        return subs;
    }

方法三、位操作法
对于数组[1,2,3],可以用一个下标0和1表示是否选择该数字,0表示未选择,1表示选中,那么每一组3个0和1的组合表示一种选择,3位共有8种选择,分别是:
000 对应[]
001 对应[3]
010 对应[2]
011 对应[2,3]
100 …
101
110
111
那么上面为1的位表示数组中该位被选中。
那么只需要遍历0到1- length中的数,判断每一个数中有那几位为1,为1的那几位即会构成一个子集中的一个元素。

vector<vector<int>> subsets(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int num_subset = pow(2, nums.size()); //由于对于数组中的每一个数字都存在两种可能,要么出现,要么不出现,所以最终集合中总的子集合的数目为2的nums.size()词方
        vector<vector<int> > res(num_subset, vector<int>());
        for (int i = 0; i < nums.size(); i++)//最外层遍历的是nums中的每一个数字
            for (int j = 0; j < num_subset; j++)//对于最终的总集合中的子集合的每一个子集合进行计算,要么出现要么不出现,j代表子集合的编号,i代表nums中的第i个数字,&上1代表出现和不出现
                if ((j >> i) & 1)
                    res[j].push_back(nums[i]);
        return res;  
    }

第二题、90. Subsets II
Given a collection of integers that might contain duplicates, nums, return all possible subsets.

Note: The solution set must not contain duplicate subsets.

For example,
If nums = [1,2,2], a solution is:

[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
注意:和上一题不同之处在于,上题中的nums中的数都是不同的数,而这题中存在重复的数目。
方法一、回溯法

vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        vector<vector<int>> subs;
        vector<int> sub;  
        genSubsets(nums, 0, sub, subs);
        return subs; 
    }
    void genSubsets(vector<int>& nums, int start, vector<int>& sub, vector<vector<int>>& subs) {//注意参数为引用,不然上层函数返回仍然为空
        subs.push_back(sub);
        for (int i = start; i < nums.size(); i++) {
            if(i == start || nums[i] != nums[i - 1]){//和第一题的回溯法不同之处在于多加了这个条件判断语句
                sub.push_back(nums[i]);
                genSubsets(nums, i + 1, sub, subs);//递归
                sub.pop_back();
            }
        }
    }

你可能感兴趣的:(leetcode-array,leetcode-dfs)