1、循环语句
(1)break和continue
break 执行流程图:
continue 执行流程图:
代码执行过程:
break 语句可以跳出 for 和 while 的循环体。如果你从 for 或 while 循环中终止,任何对应的循环 else 块将不执行。
continue 语句被用来告诉 Python 跳过当前循环块中的剩余语句,然后继续进行下一轮循环。
while 中使用 break:
n = 5
while n > 0:
n -= 1
if n == 2:
break
print(n)
print('循环结束。')
输出结果为:
4 3 循环结束。
while 中使用 continue:
n = 5
while n > 0:
n -= 1
if n == 2:
continue
print(n)
print('循环结束。')
输出结果为:
4 3 1 0 循环结束。
循环语句可以有 else 子句,它在穷尽列表(以for循环)或条件变为 false (以while循环)导致循环终止时被执行,但循环被 break 终止时不执行。
for n in range(2, 10):
for x in range(2, n):
if n % x == 0:
print(n, '等于', x, '*', n//x)
break
else:
# 循环中没有找到元素
print(n, ' 是质数')
输出结果为:
2 是质数 3 是质数 4 等于 2 * 2 5 是质数 6 等于 2 * 3 7 是质数 8 等于 2 * 4 9 等于 3 * 3
(2)pass语句
pass是空语句,是为了保持程序结构的完整性。pass 不做任何事情,一般用做占位语句。
2、迭代器和生成器
迭代是Python最强大的功能之一,是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
迭代器有两个基本的方法:iter() 和 next()。字符串,列表或元组对象都可用于创建迭代器:
>>> list=[1,2,3,4]
>>> it = iter(list) # 创建迭代器对象
>>> print (next(it)) # 输出迭代器的下一个元素
1
>>> print (next(it))
2
>>>
迭代器对象可以使用常规for语句进行遍历:
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
for x in it:
print (x, end=" ")
输出结果:1 2 3 4
也可以使用 next() 函数:
import sys # 引入 sys 模块
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
while True:
try:
print (next(it))
except StopIteration:
sys.exit()
输出结果如下:
1 2 3 4
(1)创建一个迭代器
把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__() 与 __next__() 。Python 的构造函数为 __init__(), 它会在对象初始化的时候执行。__iter__() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。__next__() 方法(Python 2 里是 next())会返回下一个迭代器对象。
创建一个返回数字的迭代器,初始值为 1,逐步递增 1:
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
x = self.a
self.a += 1
return x
myclass = MyNumbers()
myiter = iter(myclass)
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
执行输出结果为:
1 2 3 4 5
StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。
在 20 次迭代后停止执行:
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
if self.a <= 20:
x = self.a
self.a += 1
return x
else:
raise StopIteration
myclass = MyNumbers()
myiter = iter(myclass)
for x in myiter:
print(x)
执行输出结果为:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(2)生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。调用一个生成器函数,返回的是一个迭代器对象。
以下实例使用 yield 实现斐波那契数列:
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
执行以上程序,输出结果如下:
0 1 1 2 3 5 8 13 21 34 55
3、数据结构
(1)List
方法 | 描述 |
---|---|
list.append(x) | 把一个元素添加到列表的结尾,相当于 a[len(a):] = [x]。 |
list.extend(L) | 通过添加指定列表的所有元素来扩充列表,相当于 a[len(a):] = L。 |
list.insert(i, x) | 在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如 a.insert(0, x) 会插入到整个列表之前,而 a.insert(len(a), x) 相当于 a.append(x) 。 |
list.remove(x) | 删除列表中值为 x 的第一个元素。如果没有这样的元素,就会返回一个错误。 |
list.pop([i]) | 从列表的指定位置移除元素,并将其返回。如果没有指定索引,a.pop()返回最后一个元素。元素随即从列表中被移除。(方法中 i 两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在 Python 库参考手册中遇到这样的标记。) |
list.clear() | 移除列表中的所有项,等于del a[:]。 |
list.index(x) | 返回列表中第一个值为 x 的元素的索引。如果没有匹配的元素就会返回一个错误。 |
list.count(x) | 返回 x 在列表中出现的次数。 |
list.sort() | 对列表中的元素进行排序。 |
list.reverse() | 倒排列表中的元素。 |
list.copy() | 返回列表的浅复制,等于a[:]。 |
将列表当做堆栈使用
列表方法使得列表可以很方便的作为一个堆栈来使用,堆栈作为特定的数据结构,最先进入的元素最后一个被释放(后进先出)。用 append() 方法可以把一个元素添加到堆栈顶。用不指定索引的 pop() 方法可以把一个元素从堆栈顶释放出来。例如:
>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]
将列表当作队列使用
把列表当做队列用,只是在队列里第一加入的元素,第一个取出来;但是拿列表用作这样的目的效率不高。在列表的最后添加或者弹出元素速度快,然而在列表里插入或者从头部弹出速度却不快(因为所有其他的元素都得一个一个地移动)。
>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])
(2)Dictionary 字典
在字典中遍历时,关键字和对应的值可以使用 items() 方法同时解读出来:
>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave
在序列中遍历时,索引位置和对应值可以使用 enumerate() 函数同时得到:
>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe
同时遍历两个或更多的序列,可以使用 zip() 组合:
>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.
要反向遍历一个序列,首先指定这个序列,然后调用 reversed() 函数:
>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1
要按顺序遍历一个序列,使用 sorted() 函数返回一个已排序的序列,并不修改原值:
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear