- Kylin入门教程
-龙川-
介绍学习笔记kylin
引言ApacheKylin是一个开源的分布式分析引擎,提供Hadoop上的多维分析(OLAP)能力,使得超大规模数据集的实时查询和分析成为可能。它通过预计算数据立方体来加速查询,使得复杂查询可以在亚秒级响应。本文将详细介绍Kylin的基本概念、安装与配置、基本操作及高级功能,帮助你全面掌握这款强大的数据分析工具。第一部分:Kylin简介1.1什么是Kylin?Kylin是由eBay开发并捐赠给Ap
- 厦门租房信息分析展示(pycharm+python爬虫+pyspark+pyecharts)(踩坑记录)
吃西红柿的鸡蛋
大数据hadoopsparkpython
厦门租房信息分析展示(pycharm+python爬虫+pyspark+pyecharts)(踩坑记录)项目地址http://dblab.xmu.edu.cn/blog/2307/踩坑:Spark分析文件rent_analyse.py改变Spark读取csv文件的写法sparkContext=SparkContext("local","rent_analyse")sqlContext=SQLCon
- flume系列之:flume落cos
快乐骑行^_^
日常分享专栏flume系列
flume系列之:flume落cos一、参考文章二、安装cosjar包三、添加hadoop-cos的相关配置四、flume环境添加hadoop类路径五、使用cos路径六、启动/重启flume一、参考文章Kafka数据通过Flume存储到HDFS或COSflumetocos使用指南二、安装cosjar包将对应hadoop版本的hadoop-cos的jar包(hadoop-cos-{hadoop.ve
- Hadoop 和 Spark 的内存管理机制分析
王子良.
经验分享hadoopspark大数据
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- 大数据学习(五):如何使用 Livy提交spark批量任务--转载
zuoseve01
livy
Livy是一个开源的REST接口,用于与Spark进行交互,它同时支持提交执行代码段和完整的程序。Livy封装了spark-submit并支持远端执行。启动服务器执行以下命令,启动livy服务器。./bin/livy-server这里假设spark使用yarn模式,所以所有文件路径都默认位于HDFS中。如果是本地开发模式的话,直接使用本地文件即可(注意必须配置livy.conf文件,设置livy.
- Spark Livy 指南及livy部署访问实践
house.zhang
大数据-Spark大数据
背景:ApacheSpark是一个比较流行的大数据框架、广泛运用于数据处理、数据分析、机器学习中,它提供了两种方式进行数据处理,一是交互式处理:比如用户使用spark-shell,编写交互式代码编译成spark作业提交到集群上去执行;二是批处理,通过spark-submit提交打包好的spark应用jar到集群中进行执行。这两种运行方式都需要安装spark客户端配置好yarn集群信息,并打通集群网
- 大数据学习(四):Livy的安装配置及pyspark的会话执行
猪笨是念来过倒
大数据pyspark
一个基于Spark的开源REST服务,它能够通过REST的方式将代码片段或是序列化的二进制代码提交到Spark集群中去执行。它提供了以下这些基本功能:提交Scala、Python或是R代码片段到远端的Spark集群上执行;提交Java、Scala、Python所编写的Spark作业到远端的Spark集群上执行;提交批处理应用在集群中运行。从Livy所提供的基本功能可以看到Livy涵盖了原生Spar
- 探索数据科学新边界:Apache Livy 开源项目详解
毕艾琳
探索数据科学新边界:ApacheLivy开源项目详解incubator-livyApacheLivyisanopensourceRESTinterfaceforinteractingwithApacheSparkfromanywhere.项目地址:https://gitcode.com/gh_mirrors/in/incubator-livyApacheLivy是一个为ApacheSpark提供的
- SS00023.PBpositions——|Hadoop&PB级离线数仓.v02|——|Griffin.v02|Griffin部署|
yanqi_vip
数据库hadoophive大数据hdfs
一、Griffin编译准备###---软件解压缩[root@hadoop02~]#ls/opt/yanqi/software/griffin-griffin-0.5.0.zip/opt/yanqi/software/griffin-griffin-0.5.0.zip[root@hadoop02~]#cd/opt/yanqi/software/[root@hadoop02software]#unzi
- 解决 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform...警告
克里斯蒂亚诺罗纳尔多阿维罗
hadoop
这个警告意味着Hadoop在加载本地本机库时遇到了问题。通常情况下,Hadoop会尝试加载本地的本机库以提高性能,但是如果找不到适合你的操作系统和架构的本地库,它会退而使用内置的Java类来模拟所需的功能。虽然这个警告会影响Hadoop的性能,但它并不会导致Hadoop无法正常工作。你仍然可以使用Hadoop,但可能会遇到性能上的损失。解决方法:在Hadoop中,配置'java.library.p
- 大数据公司 Databricks 详解
Bj陈默
大数据
Databricks是一家在大数据和人工智能领域具有重要影响力的美国企业软件公司,以下是关于它的详细技术解析:1.起源与背景:Databricks成立于2013年,由来自加州大学伯克利分校AMP实验室的Spark大数据处理系统的多位创始人联合创立,包括AliGhodsi、AndyKonwinski、IonStoica、PatrickWendell、ReynoldXin、MateiZaharia、A
- 全面解读 Databricks:从架构、引擎到优化策略
克里斯蒂亚诺罗纳尔多阿维罗
架构spark大数据
导语:Databricks是一家由ApacheSpark创始团队成员创立的公司,同时也是一个统一分析平台,帮助企业构建数据湖与数据仓库一体化(Lakehouse)的架构。在Databricks平台上,数据工程、数据科学与数据分析团队能够协作使用Spark、DeltaLake、MLflow等工具高效处理数据与构建机器学习应用。本文将深入介绍Databricks的平台概念、架构特点、优化机制、功能特性
- Hive 数据类型全解析:大数据开发者的实用指南
大鳥
sqlhive数据仓库
在大数据处理领域,Hive作为一款基于Hadoop的数据仓库工具,被广泛应用于数据的存储、查询和分析。而理解Hive的数据类型是有效使用Hive的基础,本文将深入探讨Hive的数据类型,帮助大家更好地掌握Hive的使用。Hive数据类型概述Hive支持多种数据类型,主要可分为数值类型、日期/时间类型、字符类型、Misc类型以及复杂类型。这些数据类型为存储和处理各种不同格式的数据提供了有力的支持。以
- Java 大视界 -- 解锁 Java 与 Hadoop HDFS 交互的高效编程之道(二)
青云交
大数据新视界Java大视界HDFSJava流代码示例性能优化读写操作大数据Hadoopjava
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- Yarn工作机制?思维导图 代码示例(java 架构)
用心去追梦
java架构开发语言
YARN工作机制YARN(YetAnotherResourceNegotiator)是Hadoop生态系统中的资源管理和调度框架,它负责管理集群中的所有资源,并为应用程序提供调度服务。以下是关于YARN工作机制的详细介绍:YARN架构组件ResourceManager(RM):管理整个集群的资源分配。负责启动和监控ApplicationMaster。NodeManager(NM):每个节点上的代理
- 使用 Hadoop 实现大数据的高效存储与查询
王子良.
经验分享大数据hadoop分布式
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (正在更新中~)别人能写出来的,你也能行!多学习别人的思路,形成自己的思路,高薪工作奔你而来!
小白的大数据历程
Spark源码解析开发语言spark大数据分布式scala
后一篇链接在这接上一章请先看解读序列化抽象类第一部分(这是一个链接)目录接上一章请先看解读序列化抽象类第一部分2.Java序列化实现类JavaSerializer(1)JavaSerializationStream类代码实际例子1:序列化(2)JavaDeserializationStream代码实际例子2:反序列化Spark源码下类图在学习过程中,抓住主要问题,请思考问题为什么Kryo序列化更加
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (java序列化部分完结,正在更新RpcEnv部分~)
小白的大数据历程
Spark源码解析sparkjavapython
目录(3)JavaSerializerInstance定义了一个Java序列化实例(1)构造方法参数(2)方法1:serializeStream(3)方法2:deserializeStreamdefaultClassLoader(4)方法3:deserializeStreamloader(5)方法4:serialize(6)方法5:deserializeloader(7)方法6:deseriali
- 集群间hive数仓迁移
one code
database
方式一:(此方法需要建库建表)第一步:建库建表在原集群hive上查看迁移表的建表语句及所在库,然后在新集群hive上建库建表;showcreatetabletb_name;createdatabasedb_name;createtabletb_name.....第二步:转移数据文件到新集群;在旧集群中下载数据到本地hadoopfs-get/user/hive/warehouse/dc_ods.db
- Hive中没有超级管理员,如何进行权限控制
二进制_博客
大数据hivehadoop数据仓库
Hive中没有超级管理员,任何用户都可以进行Grant/Revoke操作开发实现自己的权限控制类,确保某个用户为超级用户比如任何用户都可以grant权限给别的用户。grantselectontabletest2touserhadoop;如何开发一个超级管理员:创建一个项目,导入mavanjar包,然后开始编写hook类importcom.google.common.base.Joiner;impo
- 调试Hadoop源代码
一张假钞
hadoopeclipse大数据
个人博客地址:调试Hadoop源代码|一张假钞的真实世界Hadoop版本Hadoop2.7.3调试模式下启动HadoopNameNode在${HADOOP_HOME}/etc/hadoop/hadoop-env.sh中设置NameNode启动的JVM参数,如下:exportHADOOP_NAMENODE_OPTS="-Xdebug-Xrunjdwp:transport=dt_socket,addr
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据离线数仓大数据数据仓库java后端hadoophive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- pyspark 中删除hdfs的文件夹
TDengine (老段)
大数据sparkhadoophdfsmapreduce
在pyspark中保存rdd的内存到文件的时候,会遇到文件夹已经存在而失败,所以如果文件夹已经存在,需要先删除。搜索了下资料,发现pyspark并没有提供直接管理hdfs文件系统的功能。寻找到一个删除的方法,是通过调用shell命令hadoopfs-rm-f来删除,这个方法感觉不怎么好,所以继续找。后来通过查找hadoophdfs的源代码发现hdfs是通过java的包org.appache.had
- Python 爬虫:获取网页数据的 5 种方法
王子良.
经验分享pythonpython开发语言爬虫
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- python捕获异常
青云游子
python
try:name="aaa"id="aaa"exceptExceptionase:print("任务报错")print(str(e))print(str(traceback.print_exc()))spark.sql("""insertintotabledim.aaaselect'1','666','{name}','{id}',null,null,null,null,current_times
- Spark任务提交流程
尘世壹俗人
大数据Spark技术大数据
当包含在applicationmaster中的spark-driver启动后,会与资源调度平台交互获取其他执行器资源,并通过反向注册通知对应的node节点启动执行容器。此外,还会根据程序的执行规划生成两个非常重要的东西,一个是根据spark任务执行计划生成n个ADG有向无环图,另一个是根据有向无环图生成对应的taskset,也可以统称为stage,ADG和taskset由于宽窄依赖以及程序的复杂度
- spark读取、写入Clickhouse以及遇到的问题
Alex_81D
大数据基础大数据从入门到精通clickhousespark
最近需要处理Clickhouse里面的数据,经过上网查找总结一下spark读写Clickhouse的工具类已经遇到的问题点。具体Clickhouse的讲解本篇不做讲解,后面专门讲解这个。一、clickhouse代码操作话不多说直接看代码1.引入依赖:ru.yandex.clickhouseclickhouse-jdbc0.2.40.2.4这个版本用的比较多一点2.spark对象创建valspark
- 2024年最新Python:Page Object设计模式_python page object,BTAJ大厂最新面试题汇集
m0_60707708
程序员python设计模式开发语言
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
- 案例分享|快速了解实时湖仓集一体技术如何助力企业降本增效
mysql
1.替代TD仓、Hadoop湖,助力农商行构建一体化数据平台某农商行最初构建了Teradata数据仓库、Oracle小数据平台以及Hadoop数据湖。多平台混合架构开发运维高,存在冗余存储、数据搬迁一致性、跨平台流转数据实时性低等问题。该农商行基于星环科技实时湖仓集一体平台,替代了Teradata数仓、Oracle数据平台和Hadoop数据湖三个平台,一体化架构同时满足数据湖海量汇集、复杂数仓模型
- 2024年总结:大转向
年度总结
本文于2025年1月2号首发于公众号“狗哥琐话”。2024年是个打工人苦命年,我看到几乎每个人都比以往辛苦。这让我想起了六字真言,钱难赚屎难吃。职业转向今年我在职业上尝试做了一个转向,具体的结果可能需要比较长的时间来检验我选择是否正确,所以转向的细节我就不全部展开了,可以确定是我依然会专注在Infra和BigData,比如今年我发布了SparkSQL和FlinkSQL的IDEA提效插件。那么我为什
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo