- 灾难性遗忘问题(Catastrophic Forgetting,CF)是什么?
Chauvin912
机器学习算法科普学习方法
灾难性遗忘问题(CatastrophicForgetting,CF)是什么?在深度学习和人工智能领域中,“灾难性遗忘”(CatastrophicForgetting)是指当神经网络在增量学习(IncrementalLearning)或持续学习(ContinualLearning)过程中遇到新任务时,往往会显著遗忘之前所学的任务知识。这种现象在需要模型长期积累知识的应用场景中尤为显著,如自动驾驶、机
- 机器学习中的增量学习(Incremental Learning,IL)策略是什么?
Chauvin912
机器学习算法科普机器学习学习人工智能
机器学习中的增量学习(IncrementalLearning,IL)策略是什么?在当今快速发展的数据驱动世界中,传统的静态机器学习模型逐渐显露出局限性。随着数据量的增长和分布的变化,模型需要不断更新,以保持其预测能力和适应性。然而,频繁的重新训练不仅耗费大量资源,还会导致模型丧失对旧数据的记忆,这被称为“灾难性遗忘”(CatastrophicForgetting)现象。为解决这一问题,增量学习(I
- 机器学习概述与应用:深度学习、人工智能与经典学习方法
刷刷刷粉刷匠
人工智能机器学习深度学习
引言机器学习(MachineLearning)是人工智能(AI)领域中最为核心的分支之一,其主要目的是通过数据学习和构建模型,帮助计算机系统自动完成特定任务。随着深度学习(DeepLearning)的崛起,机器学习技术在各行各业中的应用变得越来越广泛。在本文中,我们将详细介绍机器学习的基础概念,包括无监督学习、有监督学习、增量学习,以及常见的回归和分类问题,并结合实际代码示例来加深理解。1.机器学
- 如何利用增量学习的方法来解决灾难性遗忘的问题?
AlphaFinance
机器学习学习机器学习深度学习
增量学习是一种逐步学习新数据的方法,通过在新数据上更新模型而不是从头开始训练。这种方法在很大程度上可以缓解灾难性遗忘问题,因为它试图在学习新知识的同时保留已有知识。以下是一些使用增量学习解决灾难性遗忘问题的策略:记忆回放:记忆回放是一种常用的解决灾难性遗忘问题的方法。它通过存储一些先前学习过的样本,并在训练新数据时将这些样本与新数据混合,从而使模型能够回顾并巩固已学习的知识。这有助于在学习新任务时
- Obsidian与SuperMemo联用(四)
来自知乎的一只小胖子
在之前系列文章中,我有讲解了SuperMemo在学习场景中与其它软件协同的操作流程,包括如何在SuperMemo中导入Obsidian笔记进行增量学习的具体操作。很快几个月过去了,通过对Obsidian软件这段时间的使用和学习,我现在对两个软件的结合使用又有了一些新的想法,因此便有了此文。如果你还未阅读原文,可参考如下原文链接,来了解SuperMemo在学习中的协同使用流程:一只小胖子:Super
- 增量学习时,通过网络快速搜索关键词的快捷键是什么?
菜五
(2019-02-02-周六04:55:05)Ctrl+f3要快速搜索有关您正在阅读的主题的文章,请选择文本的一部分,按Ctrl+F3并选择谷歌
- 深度学习笔记:灾难性遗忘
UQI-LIUWJ
机器学习笔记
1灾难性遗忘介绍当神经网络被训练去学习新的任务时,它可能会完全忘记如何执行它以前学过的任务。这种现象尤其在所谓的“连续学习”(continuouslearning)或“增量学习”(incrementallearning)场景中很常见2不同视角下看待灾难性遗忘以及对应的解决方法2.1从梯度的视角2.1.1从梯度的视角看灾难性遗忘我们有两个不同任务的损失曲面,用平滑的曲面训练完之后,再在坑坑洼洼的曲面
- incremental learning(增量学习是什么意思)
:)�东东要拼命
CV基础知识1024程序员节机器学习人工智能目标检测deeplearning
有时候真的从ai的理解反复横跳,从一个不明觉厉ai的概念的小白到初识neuralnetwork的科研菜鸡。概念上跟着吴恩达大佬刷新了一下,其实只是看上去nn和大脑神经相似而已,本质上就是让机器给我们一个函数,一个“黑盒”,输进去data,出来我们想要的结果。增量学习(incrementallearning)从某种角度来说,有点契合我们人类持续不断地学习的状态,我们永远鼓励大家接受新事物,学习新知识
- Continual Learning/Lifelong Learning/Incremental Learning
Si_ang_
深度学习神经网络人工智能
一、浅谈持续学习持续学习(ContinualLearning)又叫终身学习(LifelongLearning)又叫增量学习(IncrementalLearning)。增量学习是可取的,因为它允许通过消除新数据到达时从头再训练的需要来有效地使用资源;通过防止或限制所需存储的数据量来减少内存使用,在施加隐私限制时也很重要;学习更接近于人类的学习。近年来,深度神经网络的增量学习出现了爆炸式增长。最初的工
- 连续学习(Continual Learning)或者增量学习的场景中,multiband和replay分别是什么?起到什么作用
马鹏森
机器学习基础学习
multiband和replay是两种不同的训练策略,通常用在处理连续学习或者增量学习的场景中。这些策略旨在解决新知识学习导致旧知识遗忘的问题,即所谓的灾难性遗忘。以下是multiband和replay两种策略的基本区别:Multiband:定义:multiband通常是指一种训练过程,其中模型被设计为可以同时学习和保持对多个任务或数据集的知识(同时学习新旧知识)。这种方法的目标是在整个训练过程中
- IJCAI2023 | 高效训练Transformers的方法
JOYCE_Leo16
Transformer深度学习transformer人工智能计算机视觉
来源:Google数据科学文章目录前言一、ComputationEffciency1.Optimization(优化器)2.Initialization(参数初始化)3.Sparsetraining(稀疏训练)4.Overparameterization(过参数化)5.Largebatchtraining(大批量训练)6.Incrementallearning(增量学习)二、DataSelecti
- 2024年原创深度学习算法项目分享
Jason160918
python机器学习目标检测人工智能自然语言处理计算机视觉
原创深度学习算法项目分享,包括以下领域:图像视频、文本分析、知识图谱、推荐系统、问答系统、强化学习、机器学习、多模态、系统界面、爬虫、增量学习等领域…有需要的话,评论区私聊
- SuperMemo16有一小篇幅的文章,因它整合在“增量学习”内,所以不受人欢迎。 “增量学习”这篇文章,其篇幅之长,可当一本书来对待。
菜五
(2018-05-16-周三00:15:52)SuperMemo16有一篇短小的文章,但它不受欢迎,它与“增量学习”的文章结合在一起,这篇文章读起来就像一本小书(由于篇幅太长)。
- 除了items、主题和概念之外,您还可以在增量学习中使用任务。
菜五
(2018-11-19-周一15:41:42)除了items、主题和概念之外,您还可以在增量学习中使用任务。
- 近日思考()
坠金
目标识别/语义分割计算机视觉
科研过程的一些小思考,多半是自己还没能力实现的,如果有路过的大佬知道这些问题有解决的思路,请给我一点关键词,验证可行的请你喝咖啡~Q1:cv任务是否可以分阶段学习?类似婴儿有一定的多分类能力,但没见过苹果,给它新数据集但是只标签只有背景和苹果(可能包含以前见过的类别,但标记为背景)增量学习(IncrementalLearning)或继续学习(ContinualLearning)?对这块不太了解,查
- 63基于matlab的生物地理的优化器(BBO)被用作多层感知器(MLP)的训练器。
顶呱呱程序
matlab工程应用matlab学习人工智能多种优化算法比较模式识别
基于matlab的生物地理的优化器(BBO)被用作多层感知器(MLP)的训练器。粒子群优化(PSO)、蚁群优化(ACO)、遗传算法(GA)、进化策略(ES)和基于概率的增量学习(PBIL)。计算了BBO-MLP、PSO、ACO、ES、GA和PBIL的分类精度并相互比较。输出每种算法的收敛曲线和分类精度。程序已调通,可直接运行。63模式识别多种优化算法比较(xiaohongshu.com)
- 《机器学习实战》1章-机器学习概览
一只勤劳的小鸡
机器学习人工智能机器学习
前言: 本文是对蜥蜴书第二版第一章学习概要。一、什么是机器学习利用经验E来学习任务T,性能是P,如果针对任务T的性能P随着经验E不断增长,则称为机器学习。-TomMitchell二、机器学习分类Ⅰ、按照是否有监督有监督学习有标签无监督学习无标签半监督学习部分有标签强化学习有奖惩。Ⅱ、按照是否动态增量学习(持续学习)在线学习不良的数据可能会使系统性能降低。批量学习Ⅲ、按研究对象基于实例学习基于模型学
- 【论文翻译】Faster ILOD:Incremental Learning for Object Detectors based on Faster RCNN
小张好难瘦
论文目标检测人工智能计算机视觉
FasterILOD:IncrementalLearningforObjectDetectorsbasedonFasterRCNNFasterILOD:基于FasterRCNN的目标检测器增量学习论文地址:https://arxiv.org/pdf/2003.03901.pdf代码地址:无目录Abstract1Introduction2ProblemFormulation3RelatedWork3
- 读书笔记-增量学习-EEIL_End-to-End Incremental Learning
谷粤狐
读书笔记机器学习人工智能深度学习神经网络计算机视觉
一篇2018年的论文:End-to-EndIncrementalLearning。为了使模型实现增量学习,把新、旧数据一起重新训练会导致时间、存储成本等一系列问题。作者提出的方法仅使用新数据与部分代表性的旧数据。基于Distillation知识蒸馏从旧数据中提取代表性样本、Crossentropy交叉熵学习新数据。题目的End-to-End指的是能同时训练更新Classification分类器和代
- 联邦类增量学习
王洛伊
学习
FCIL联邦类增量学习已经参与联邦学习的用户经常可能收到新的类别,但是考虑到每个用户自己设备的存储空间有限,很难对其收集到的所有类别都保存下足够数量的数据。这种情况会导致联邦学习模型对于旧类数据的性能遇到严重的灾难性遗忘。全局-局部遗忘补偿(GLFC)模型,同时从global和local俩个角度出发,尽可能的减弱灾难性遗忘,使联邦学习最终可训练一个全局增量模型。为了解决由于localclient的
- 增量学习分享
cqbelt
日记学习机器学习深度学习
增量学习主要应用于判别性任务。在这个场景中,分类任务是按顺序学习的。在序列的最后,判别模型应该能够记住所有的任务。从一个任务到下一个任务的简单的微调方法会导致灾难性遗忘,也就是说,无法在之前的任务上保持初始性能。之前提出的方法可以分为四种类型。第一种方法,称为排练,是保留以前任务的样本。这些样本可以用不同的方式来克服遗忘。该方法不能用于以前任务的数据不可用的场景。此外,这种方法的可扩展也会受到质疑
- sklearn 增量学习
吹洞箫饮酒杏花下
对于大数据集,在训练时会出现MemoryError。sklearn提供了几种办法,一是从根本上节省空间,二是流式读取,三是节省每次运行时的数据量。1.流式数据要给算法流式数据或小batch的数据。读入数据的一部分?2.特征提取或者降维sklearn提供了很多方法。3.增量学习算法sklearn中任何提供了partial_fit的函数的学习器都可以进行增量学习。运行数据的一部分。每次训练只有一个mi
- 【知识点】增量学习、在线学习、离线学习的区别
风等雨归期
学习
参考链接:https://www.6aiq.com/article/1613258706447?p=1&m=0离线学习常见的学习方式,一次性将所有数据参与进训练。离线学习完成了目标函数的优化将不会在改变了离线学习需要一次提供整个训练集时间和空间成本效率低发生数据变更或模型漂移需要从头开始训练离线学习模型稳定性高,方便做模型的验证评估在线学习在线学习,能够根据线上反馈数据,实时快速地进行模型调整,使
- 超越传统学习:揭秘增量学习的优势与挑战
机器学习深度学习
增量学习代表了学术界的一种动态方法,促进逐步和一致的知识同化。与向学习者提供海量信息的传统方法不同,增量学习将复杂的主题分解为可管理的片段。在机器学习中,增量方法训练人工智能模型逐步吸收新知识。这使模型能够保留并增强现有的理解,形成持续进步的基石。什么是增量学习?增量学习是一种教育方法,通过以可管理的小增量引入新数据,多年来逐渐积累知识。增量学习不是试图立即学习所有内容,而是将复杂的主题分解为更小
- yolo中迁移学习和增量学习的区别是什么,适用于什么情况
小镇种田家
yoloYOLO迁移学习学习深度学习
在YOLO中,迁移学习和增量学习是两种不同的训练策略,它们有着不同的应用场景和目的。1.迁移学习(TransferLearning):迁移学习是指将在一个任务上训练好的模型应用于另一个相关任务上。在YOLO中,迁移学习可以通过将在大规模数据集(如COCO数据集)上预训练的模型作为初始模型,然后在目标数据集(如自己的数据集)上进行微调训练。这样做的好处是,可以快速将模型适应到新数据集,从而节省训练时
- Unsupervised Recognition of Unknown Objects for Open-World Object Detection(论文解析)
黄阳老师
目标检测目标跟踪人工智能
UnsupervisedRecognitionofUnknownObjectsforOpen-WorldObjectDetection摘要2相关工作摘要开放世界目标检测(OWOD)将目标检测问题扩展到一个现实且动态的场景,要求检测模型能够检测已知和未知对象,并能够增量学习新引入的知识。当前的OWOD模型,如ORE和OW-DETR,侧重于将具有高物体性分数的区域标记为未知对象,它们的性能在很大程度上
- PROB: Probabilistic Objectness for Open World Object Detection(论文解析)
黄阳老师
目标检测人工智能计算机视觉
PROB:ProbabilisticObjectnessforOpenWorldObjectDetection摘要2相关工作摘要开放世界目标检测(OWOD)是一个新的、具有挑战性的计算机视觉任务,它弥合了传统的目标检测(OD)基准和现实世界中的目标检测之间的差距。除了检测和分类已知/标记的对象外,OWOD算法还应该能够检测新颖/未知的对象,这些对象可以进行分类和增量学习。在标准的OD中,不与已标记
- 【增量学习】Incremental Intent Detection for Medical Domainwith Contrastive Replay Networks
nlp_xiaobai
学习自然语言处理tensorflow深度学习机器学习
这篇2022年5月份的ACL文章出自于中科院Abstract传统的医疗意图检测方法需要固定的预定义意图类别。然而,由于现实世界中新的医学意图不断涌现,这样的要求并不现实。考虑到每次新数据和意图进入时存储和重新训练整个数据的计算成本很高,我们建议增量学习出现的意图,同时避免灾难性地忘记旧意图。我们首先为医疗意图检测制定增量学习。然后,我们采用基于记忆的方法来处理增量学习。我们进一步建议使用对比重放网
- 《A Survey of Model Compression and Acceleration for Deep Neural Networks》笔记
luyanfcp
Introduce随着DNN的层数和节点个数越来越多,它面临着两方面的问题。一方面它的计算和存储成本越来越高,对一些及时性的程序带来了挑战(在线学习和增量学习);另一方面由于小型化设备越来越普及,小型设备对DNN越来越强。但由于体积和计算难度,DNN在小型设备上的部署也面临挑战。本文综述了最近几年ML、最优化、计算机体系结构、数据压缩、硬件设计等等方面对DNN加速和压缩方面的进展。本文讲这些进展分
- 机器学习的种类介绍
statr
现有的机器学习种类繁多,我们一般可以进行如下的分类标准:是否在人类监督下学习(监督学习、非监督学习、半监督学习和强化学习)是否可以动态的增量学习(在线学习和批量学习)是简单的将新的数据点和已知的数据点进行匹配,还是像科学家那样对训练数据进行模型检测,然后建立一个预测模型(基于实例的学习和基于模型的学习)这些标准之间并不排斥。一、监督学习和非监督学习根据训练期间接受的监督数量和监督类型,可以将机器学
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro