数据结构与算法:回溯+分治+动态规划

【回溯】

1. 利用回溯算法求解八皇后问题

import random

#冲突检查,在定义state时,采用state来标志每个皇后的位置,其中索引用来表示横坐标,基对应的值表示纵坐标,例如: state[0]=3,表示该皇后位于第1行的第4列上

def conflict(state, nextX):

    nextY = len(state)

    for i in range(nextY):

        #如果下一个皇后的位置与当前的皇后位置相邻(包括上下,左右)或在同一对角线上,则说明有冲突,需要重新摆放

        if abs(state[i]-nextX) in (0, nextY-i):

        # 表示如果下一个皇后和正在考虑的前一个皇后的水平距离为0或者垂直距离相等,就返回TRUE,否则返回False

            return True

    return False


#采用生成器的方式来产生每一个皇后的位置,并用递归来实现下一个皇后的位置。

def queens(num, state=()):

    for pos in range(num):

        if not conflict(state, pos):

            #产生当前皇后的位置信息

            #如果只剩一个皇后没有放置

            if len(state) == num-1:

                yield (pos, )

            #否则,把当前皇后的位置信息,添加到状态列表里,并传递给下一皇后。

            #程序要从前面的皇后得到包含位置信息的元组(元组不可更改)

            #并要为后面的皇后提供当前皇后的每一种合法的位置信息

            #所以把当前皇后的位置信息,添加到状态列表里,并传递给下一皇后。

            else:

                for result in queens(num, state+(pos,)):

                    yield (pos, ) + result


#为了直观表现棋盘,用X表示每个皇后的位置

def prettyprint(solution):

    def line(pos, length=len(solution)):

        return '. ' * (pos) + 'X ' + '. '*(length-pos-1)

    for pos in solution:

        print line(pos)

    for item in queens(8):

        print item


if __name__ == "__main__":

    prettyprint(random.choice(list(queens(8))))

  2. 利用回溯算法求解 0-1 背包问题

'''0-1背包问题'''
n = 3      # 物品数量
c = 30      # 包的载重量
w = [20, 15, 15] # 物品重量
v = [45, 25, 25] # 物品价值
maxw = 0 # 合条件的能装载的最大重量
maxv = 0 # 合条件的能装载的最大价值
bag = [0,0,0] # 一个解(n元0-1数组)长度固定为n
bags = []   # 一组解
bestbag = None # 最佳解
# 冲突检测
def conflict(k):
  global bag, w, c
  # bag内的前k个物品已超重,则冲突
  if sum([y[0] for y in filter(lambda x:x[1]==1, zip(w[:k+1], bag[:k+1]))]) > c:
    return True
  return False
# 套用子集树模板
def backpack(k): # 到达第k个物品
  global bag, maxv, maxw, bestbag
  if k==n: # 超出最后一个物品,判断结果是否最优
    cv = get_a_pack_value(bag)
    cw = get_a_pack_weight(bag)
    if cv > maxv : # 价值大的优先
      maxv = cv
      bestbag = bag[:]
    if cv == maxv and cw < maxw: # 价值相同,重量轻的优先
      maxw = cw
      bestbag = bag[:]
  else:
    for i in [1,0]: # 遍历两种状态 [选取1, 不选取0]
      bag[k] = i # 因为解的长度是固定的
      if not conflict(k): # 剪枝
        backpack(k+1)
# 根据一个解bag,计算重量
def get_a_pack_weight(bag):
  global w
  return sum([y[0] for y in filter(lambda x:x[1]==1, zip(w, bag))])
# 根据一个解bag,计算价值
def get_a_pack_value(bag):
  global v
  return sum([y[0] for y in filter(lambda x:x[1]==1, zip(v, bag))])
# 测试
backpack(0)
print(bestbag, get_a_pack_value(bestbag))

【分治】

利用分治算法求一组数据的逆序对个数

class Solution:
    def InversePairs(self, data):
        if not data:
            return 0
        temp = [i for i in data]
        return self.mergeSort(temp, data, 0, len(data)-1) % 1000000007
       
    def mergeSort(self, temp, data, low, high):
        if low >= high:
            temp[low] = data[low]
            return 0
        mid = (low + high) / 2
        left = self.mergeSort(data, temp, low, mid)
        right = self.mergeSort(data, temp, mid+1, high)
           
        count = 0
        i = low
        j = mid+1
        index = low
        while i <= mid and j <= high:
            if data[i] <= data[j]:
                temp[index] = data[i]
                i += 1
            else:
                temp[index] = data[j]
                count += mid-i+1
                j += 1
            index += 1
        while i <= mid:
            temp[index] = data[i]
            i += 1
            index += 1
        while j <= high:
            temp[index] = data[j]
            j += 1
            index += 1
        return count + left + right

【动态规划】

1. 0-1 背包问题

def bag(n, c, w, v):
    """
    测试数据:
    n = 6  物品的数量,
    c = 10 书包能承受的重量,
    w = [2, 2, 3, 1, 5, 2] 每个物品的重量,
    v = [2, 3, 1, 5, 4, 3] 每个物品的价值
    """
    # 置零,表示初始状态
    value = [[0 for j in range(c + 1)] for i in range(n + 1)]
    for i in range(1, n + 1):
        for j in range(1, c + 1):
            value[i][j] = value[i - 1][j]
            # 背包总容量够放当前物体,遍历前一个状态考虑是否置换
            if j >= w[i - 1] and value[i][j] < value[i - 1][j - w[i - 1]] + v[i - 1]:
                value[i][j] = value[i - 1][j - w[i - 1]] + v[i - 1]
    for x in value:
        print(x)
    return value

def show(n, c, w, value):
    print('最大价值为:', value[n][c])
    x = [False for i in range(n)]
    j = c
    for i in range(n, 0, -1):
        if value[i][j] > value[i - 1][j]:
            x[i - 1] = True
            j -= w[i - 1]
    print('背包中所装物品为:')
    for i in range(n):
        if x[i]:
            print('', i+1, '个,', end='')

  2. 最小路径和(详细可看 Minimum Path Sum)

class Solution(object):
    def minPathSum(self, grid):
        row = len(grid)
        col = len(grid[0])
        if grid==None or row==0:
            return 0
        dp = [ [0]*col for _ in range(row)]
        #Base Case
        dp[0][0] = grid[0][0]
        for i in range(1,row):
            dp[i][0] = dp[i-1][0] + grid[i][0]
        for i in range(1,col):
            dp[0][i] = dp[0][i-1] + grid[0][i]
        #一般情况
        for i in range(1,row):
            for j in range(1,col):
                dp[i][j] = min(dp[i-1][j],dp[i][j-1])+grid[i][j]
        return dp[-1][-1]

  3. 编程实现莱文斯坦最短编辑距离

import numpy

 

def wer2(r, h):

    # Initialization


    #生成一个全是0的二维数组

    d = numpy.zeros((len(r)+1)*(len(h)+1), dtype=numpy.uint8)

    print(d)

    #此时的d形如:[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

    #将二维数组变成n*n的格式

    d = d.reshape((len(r)+1, len(h)+1))

    print(d)

    #此时的的形如:

    """

    [[0 0 0 0]

     [0 0 0 0]

     [0 0 0 0]

     [0 0 0 0]]

    """

    #为数组两侧赋值

    for i in range(len(r)+1):

        for j in range(len(h)+1):

            if i == 0:

                d[0][j] = j

            elif j == 0:

                d[i][0] = i

    print(d)

    #此时的d形如:

    """

    [[0 1 2 3]

     [1 0 0 0]

     [2 0 0 0]

     [3 0 0 0]

     ]

    """

    # Computation

    #计算编辑距离

    for i in range(1, len(r)+1):

        for j in range(1, len(h)+1):

            if r[i-1] == h[j-1]:

                d[i][j] = d[i-1][j-1]

            else:

                #替换

                substitution = d[i-1][j-1] + 1

                #插入

                insertion    = d[i][j-1] + 1

                #删除

                deletion     = d[i-1][j] + 1

                print(substitution,insertion,deletion)

                d[i][j] = min(substitution, insertion, deletion)

    print(d)

    #最终的d形如:

    """

    [[0 1 2 3]

     [1 1 2 3]

     [2 2 1 2]

     [3 3 2 2]]

    """

    return d[len(r)][len(h)]

if __name__ == '__main__':

    res=wer2(['c','b','c'],['a','b','d'])

    print(res)

  4. 编程实现查找两个字符串的最长公共子序列

# 最长公共子序列问题

# 求 a,b 序列的最长公共子序列

import numpy as np

 

def lcs_len(a,b):

    n = len(a)

    m = len(b)

    p = n+1

    q = m+1

    c = np.zeros((p,q))

    val = c.copy()

    for i in range(1,p):

        for j in range(1,q):

            if a[i-1] == b[j-1]:

                c[i,j] = c[i-1,j-1] + 1

                val[i,j] = 0   # 在左上角

            elif c[i-1,j] >= c[i,j-1]:

                c[i,j] = c[i-1,j]

                val[i,j] = 1   # 在上方

            else:

                c[i,j] = c[i,j-1]

                val[i,j] = 2   # 在左方

    k = int(c[n,m])  # k 等于 最长公共子序列的元素个数

    print "k =",k

    G = range(k+1)   # G 用来保存最长公共子序列

    while k>0:

        if val[n,m]==1:

            n-=1

        elif val[n,m]==2:

            m-=1

        else:

            G[k] = a[n-1]

            k-=1

            n-=1

            m-=1

    return G[1:]

 

a,b = [1,2,3,5,7,8,9],[1,2,3,4,5,9]

h = lcs_len(a,b)

print h

  5. 编程实现一个数据序列的最长递增子序列

class myStack:

    #找出以元素i结尾的最长递增子序列

    #每一次为i进行分配时,要检查前面所有的算法ai(i

    #若ai小于ax,则说明ax可以跟在ai后形成一个新的递增子序列

    #否则,以ax结尾的递增子序列的最长长度为1

    def getHeight(self, men, n):

        longest = {}    #c存一个字典

        longest[0] = 1

        for i in range(1, len(men)):

            maxlen = -1

            for j in range(0, i):

                if men[i]>men[j] and maxlen<longest[j]:

                    maxlen = longest[j]

            if maxlen>=1:    #说明之前的递增序列中,有ax可以跟的

                longest[i] = maxlen +1

            else:

                longest[i] = 1

        return max(longest.values())

  练习:

1. 电话号码的字母组合 https://leetcode-cn.com/problems/letter-combinations-of-a-phone-number/

思路:字典

class Solution:
    def letterCombinations(self, digits: str) -> List[str]:
     if
len(digits) == 0: return [] digit_map={ 0:'0', 1:'1', 2:'abc', 3:'def', 4:'ghi', 5:'jkl', 6:'mno', 7:'pqrs', 8:'tuv', 9:'wxyz' } result = [""] for digit in digits: tmp_list = [] for ch in digit_map[int(digit)]: for str in result: tmp_list.append(str+ch) result = tmp_list return result

 

2. 全排列 https://leetcode-cn.com/problems/permutations/

思路:递归

class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
     if
len(nums)<=1: return [nums] answer = [] for i, num in enumerate(nums): n = nums[:i]+nums[i+1:] for y in self.permute(n): answer.append([num]+y) return answer

 

3. 分割回文串 II https://leetcode-cn.com/problems/palindrome-partitioning-ii/comments/ 

 思路:动态规划

class Solution:
    def minCut(self, s: str) -> int:
        if s == s[::-1]:  # s=[]适用
            return 0
        dp = [len(s)] * len(s)
        dp[0] = 0
        for i in range(1, len(s)):
            for j in range(i+1):
                if s[j:i+1] == s[j:i+1][::-1]:
                    if j == 0:
                        dp[i] = 0
                    else:
                        dp[i] = min(dp[i], dp[j-1] + 1)
        return dp[-1]

 

4. 正则表达式匹配 https://leetcode-cn.com/problems/regular-expression-matching/

思路:动态规划


class Solution:
    def isMatch(self, s: str, p: str) -> bool:
     #if not s or not p: #return False s_len = len(s) p_len = len(p) dp = [[False] * (p_len + 1) for _ in range(s_len + 1)] #print(dp) dp[0][0] = True for i in range(p_len): if p[i] == "*" and dp[0][i - 1]: dp[0][i + 1] = True #print(dp) for i in range(s_len): for j in range(p_len): if p[j] == s[i] or p[j] == ".": dp[i + 1][j + 1] = dp[i][j] elif p[j] == "*": if p[j - 1] != s[i]: dp[i + 1][j + 1] = dp[i + 1][j - 1] if p[j-1] == s[i] or p[j-1] == ".": dp[i+1][j+1] = (dp[i][j+1] or dp[i+1][j] or dp[i+1][j-1]) #print(dp) return dp[-1][-1]

 

5. 最小路径和 https://leetcode-cn.com/problems/minimum-path-sum/

思路:动态规划

class Solution(object):
    def minPathSum(self, grid):
        row = len(grid)
        col = len(grid[0])
        if grid==None or row==0:
            return 0
        dp = [ [0]*col for _ in range(row)]
        #Base Case
        dp[0][0] = grid[0][0]
        for i in range(1,row):
            dp[i][0] = dp[i-1][0] + grid[i][0]
        for i in range(1,col):
            dp[0][i] = dp[0][i-1] + grid[0][i]
        #一般情况
        for i in range(1,row):
            for j in range(1,col):
                dp[i][j] = min(dp[i-1][j],dp[i][j-1])+grid[i][j]
        return dp[-1][-1]

 

6. 零钱兑换 [作为可选] https://leetcode-cn.com/problems/coin-change/

 

7. 买卖股票的最佳时机 [作为可选] https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/

思路:动态规划

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        profit=0
        buy=prices[0]
        for i in range(0,len(prices)):
            buy=min(buy,prices[i])
            profit=max(profit, prices[i]-buy)
        return profit

 

8. 乘积最大子序列 [作为可选] https://leetcode-cn.com/problems/maximum-product-subarray/

思路:动态规划

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        #temp记录整个数组的子序列最大连乘积        
        temp = nums[0]        
        length = len(nums)                
        #M数组记录包含当前位置的最大连乘值        
        M = [0 for i in range(length)]        
        #m数组记录包含当前位置的最小连乘值        
        m = [0 for i in range(length)]                
        for i in range(length):            
            if i == 0:                
                M[i] = nums[i]               
                m[i] = nums[i]            
            else:                
                #包含当前位置的最大连乘值从:当前位置和到第i-1个元素的最大连乘值的乘积、当前位置和到第i-1个元素的最小连乘值的乘积当前元素中选出             
                M[i] = max(max(M[i-1]*nums[i],m[i-1]*nums[i]),nums[i])                
                m[i] = min(min(M[i-1]*nums[i],m[i-1]*nums[i]),nums[i])                            
                temp = max(temp,M[i])                    
        return temp

 

9. 三角形最小路径和 [作为可选] https://leetcode-cn.com/problems/triangle/

转载于:https://www.cnblogs.com/deeplearning-man/p/10884769.html

你可能感兴趣的:(数据结构与算法,python)