第七章、Hadoop之MapReduce框架原理(Shuffle机制)

一、简介

1、介绍说明

  • Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。

2、Shuffle示意图

第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第1张图片

二、Partition分区

1、默认分区

  • 问题引出
  • 要求将统计结果按照条件输出到不同文件中(分区)
    比如:将统计结果按照手机归属地不同省份输出到不同的文件中。
  • 默认Partitioner分区
public class HashPartitioner<K, V> extends Partitioner<K, V> {
     

  /** Use {@link Object#hashCode()} to partition. */
  public int getPartition(K key, V value,
                          int numReduceTasks) {
     
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }

}

2、自定义Partitioner

  • 分区步骤
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第2张图片
  • 分区总结
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第3张图片
  • 案例分析
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第4张图片

3、自定义分区代码实现

  • 需求:将统计结果按照手机归属地不同省份输出到不同文件中(分区)
  • 自定义分区代码
package com.lj.wordcount;

import com.lj.flowsum.FlowBean;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
     

    @Override
    public int getPartition(Text key, FlowBean value, int numPartitions) {
     

        // 1 获取电话号码的前三位
        String preNum = key.toString().substring(0, 3);

        int partition = 4;

        // 2 判断是哪个省
        if ("136".equals(preNum)) {
     
            partition = 0;
        }else if ("137".equals(preNum)) {
     
            partition = 1;
        }else if ("138".equals(preNum)) {
     
            partition = 2;
        }else if ("139".equals(preNum)) {
     
            partition = 3;
        } else {
     
            partition = 4;
        }

        return partition;
    }
}
  • 在驱动函数中增加自定义数据分区设置和ReduceTask设置
package com.lj.flowsum;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {
     

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
     

        args = new String[]{
     "F:/HadoopTest/MapReduce/input/phone_data.txt","F:/HadoopTest/MapReduce/output/"};

        Configuration conf = new Configuration();
        // 1 获取job对象
        Job job = Job.getInstance(conf );

        // 2 设置jar的路径
        job.setJarByClass(FlowsumDriver.class);

        // 3 关联mapper和reducer
        job.setMapperClass(FlowCountMapper.class);
        job.setReducerClass(FlowCountReducer.class);

        // 4 设置mapper输出的key和value类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        // 5 设置最终输出的key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //--> 8 指定自定义数据分区
        job.setPartitionerClass(ProvincePartitioner.class);

        //--> 9 同时指定相应数量的reduce task
        job.setNumReduceTasks(5);

        // 6 设置输入输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 提交job
        boolean result = job.waitForCompletion(true);

        System.exit(result?0 :1);
    }
}

三、WritableComparable排序

1、排序概述

第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第5张图片
第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第6张图片

2、排序分类

第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第7张图片

3、自定义排序WritableComparable

  • 原理分析
  • bean对象做为key传输,需要实现WritableComparable接口重写compareTo方法,就可以实现排序。
@Override
public int compareTo(FlowBean o) {
     

	int result;
		
	// 按照总流量大小,倒序排列
	if (sumFlow > bean.getSumFlow()) {
     
		result = -1;
	}else if (sumFlow < bean.getSumFlow()) {
     
		result = 1;
	}else {
     
		result = 0;
	}

	return result;
}

4、WritableComparable排序案例实操(全排序)

  • 需求:根据前面案例产生的结果再次对总流量进行排序
  • 需求分析
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第8张图片
  • 代码实现
  • FlowBean对象在在新需求的基础上增加了比较功能
package com.lj.flowsum;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements WritableComparable<FlowBean> {
     

    private long upFlow;// 上行流量
    private long downFlow;// 下行流量
    private long sumFlow;// 总流量

    // 空参构造, 为了后续反射用
    public FlowBean() {
     
        super();
    }

    public FlowBean(long upFlow, long downFlow) {
     
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        sumFlow = upFlow + downFlow;
    }


    @Override
    public void write(DataOutput dataOutput) throws IOException {
     

        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);

    }

    @Override
    public void readFields(DataInput dataInput) throws IOException {
     

        // 必须要求和序列化方法顺序一致
        upFlow = dataInput.readLong();
        downFlow = dataInput.readLong();
        sumFlow = dataInput.readLong();

    }

    public long getUpFlow() {
     
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
     
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
     
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
     
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
     
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
     
        this.sumFlow = sumFlow;
    }

    public void set(long upFlow2, long downFlow2) {
     

        upFlow = upFlow2;
        downFlow = downFlow2;
        sumFlow = upFlow2 + downFlow2;

    }

    @Override
    public String toString() {
     
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }

    @Override
    public int compareTo(FlowBean flowBean) {
     
        int result;

        // 按照总流量大小,倒序排列
        if (sumFlow > flowBean.getSumFlow()) {
     
            result = -1;
        }else if (sumFlow < flowBean.getSumFlow()) {
     
            result = 1;
        }else {
     
            result = 0;
        }

        return result;
    }
}
  • 编写Mapper类
package com.lj.flowsum;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class FlowCountMapper extends Mapper<LongWritable, Text, FlowBean, Text> {
     

    private Text v = new Text();
    private FlowBean bean = new FlowBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
     
        // 7 13560436666 120.196.100.99 1116 954 200

        // 1 获取一行
        String line = value.toString();

        // 2 切割 \t
        String[] fields = line.split("\t");

        // 3 封装对象
        v.set(fields[1]);// 封装手机号

        long upFlow = Long.parseLong(fields[fields.length - 3]);
        long downFlow = Long.parseLong(fields[fields.length - 2]);

        bean.set(upFlow,downFlow);

        // 4 写出
        context.write(bean, v);
    }
}
  • 编写Reducer类
package com.lj.flowsum;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowCountReducer extends Reducer<FlowBean, Text, Text, FlowBean>{
     
    
    FlowBean v = new FlowBean();

    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
     
        // 循环输出,避免总流量相同情况
        for (Text text : values) {
     
            context.write(text, key);
        }
    }
}
  • 编写Driver类
package com.lj.flowsum;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {
     

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
     

        args = new String[]{
     "F:/HadoopTest/MapReduce/input/phone_data.txt","F:/HadoopTest/MapReduce/output/"};

        Configuration conf = new Configuration();
        // 1 获取job对象
        Job job = Job.getInstance(conf );

        // 2 设置jar的路径
        job.setJarByClass(FlowsumDriver.class);

        // 3 关联mapper和reducer
        job.setMapperClass(FlowCountMapper.class);
        job.setReducerClass(FlowCountReducer.class);

        // 4 设置mapper输出的key和value类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        // 5 设置最终输出的key和value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 6 设置输入输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 提交job
        boolean result = job.waitForCompletion(true);

        System.exit(result?0 :1);
    }
}

5、WritableComparable排序案例实操(区内排序)

  • 需求:要求每个省份手机号输出的文件中按照总流量内部排序
  • 需求分析
  • 基于前一个需求,增加自定义分区类,分区按照省份手机号设置。
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第9张图片
  • 代码实现
  • 增加自定义分区类
package com.lj.flowsum;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<FlowBean, Text>{
     

    @Override
    public int getPartition(FlowBean key, Text value, int numPartitions) {
     
        // key是手机号
        // value 流量信息
        
        // 获取手机号前三位
        String prePhoneNum = key.toString().substring(0, 3);
        
        int partition = 4;
        
        if ("136".equals(prePhoneNum)) {
     
            partition = 0;
        }else if ("137".equals(prePhoneNum)) {
     
            partition = 1;
        }else if ("138".equals(prePhoneNum)) {
     
            partition = 2;
        }else if ("139".equals(prePhoneNum)) {
     
            partition = 3;
        }
        
        return partition;
    }

}
  • 在驱动类中添加分区类
// 加载自定义分区类
job.setPartitionerClass(ProvincePartitioner.class);

// 设置Reducetask个数
job.setNumReduceTasks(5);

四、Combiner合并

1、介绍说明

第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第10张图片

2、自定义Combiner实现步骤

  • 自定义一个Combiner继承Reducer,重写Reduce方法
package com.lj.wordcount;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable>{
     
    
    private IntWritable v = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,
            Context context) throws IOException, InterruptedException {
     
        
        int sum = 0;
        // 1 累加求和
        for (IntWritable value : values) {
     
            sum += value.get();
        }
        v.set(sum);
        // 2 写出
        context.write(key, v);
    }
}
  • 在Job驱动类中设置
  • job.setCombinerClass(WordCountCombiner.class);

3、Combiner合并案例实操

  • 需求:统计过程中对每一个MapTask的输出进行局部汇总,以减小网络传输量即采用Combiner功能
  • (1) 数据输入
    输入数据较多。
  • (2) 期望输出数据
    期望:Combine输入数据多,输出时经过合并,输出数据降低。
  • 需求分析
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第11张图片
  • 代码操作
  • 增加一个WordcountCombiner类继承Reducer
package com.lj.wordcount;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable>{
     
    
    private IntWritable v = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,
            Context context) throws IOException, InterruptedException {
     
        
        int sum = 0;
        // 1 累加求和
        for (IntWritable value : values) {
     
            sum += value.get();
        }
    
        v.set(sum);
        
        // 2 写出
        context.write(key, v);
    }
}
  • 1. 在WordCountDriver驱动类中指定Combiner
// 指定需要使用combiner,以及用哪个类作为combiner的逻辑
job.setCombinerClass(WordCountCombiner.class);
  • 2. 将WordCountReducer作为Combiner在WordcCountDriver驱动类中指定
// 指定需要使用Combiner,以及用哪个类作为Combiner的逻辑
job.setCombinerClass(WordCountReducer.class);
  • 3. 对比结果
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第12张图片

五、GroupingComparator分组(辅助排序)

1、介绍说明

  • 对Reduce阶段的数据根据某一个或几个字段进行分组
  • 分组排序步骤:
  • (1) 自定义类继承WritableComparator
  • (2) 重写compare()方法
@Override
public int compare(WritableComparable a, WritableComparable b) {
     
	// 比较的业务逻辑
	return result;
}
  • (3) 创建一个构造器将比较对象的类传给父类
protected OrderGroupingComparator() {
     
	super(OrderBean.class, true);
}

2、分组案例代码实现

  • 需求:有如下订单数据,现在需要求出每一个订单中最贵的商品
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第13张图片
  • 期望输出数据
    1 222.8
    2 722.4
    3 232.8
  • 需求分析
  • (1) 利用“订单id和成交金额”作为key,可以将Map阶段读取到的所有订单数据按照id升序排序,如果id相同再按照金额降序排序,发送到Reduce。
  • (2) 在Reduce端利用groupingComparator将订单id相同的kv聚合成组,然后取第一个即是该订单中最贵商品。
    第七章、Hadoop之MapReduce框架原理(Shuffle机制)_第14张图片
  • 代码实现
  • 定义订单信息OrderBean类
package com.lj.order;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class OrderBean implements WritableComparable<OrderBean> {
     

    private int order_id;
    private double price;

    public OrderBean() {
     
        super();
    }

    public OrderBean(int order_id, double price) {
     
        super();
        this.order_id = order_id;
        this.price = price;
    }

    // 二次排序
    @Override
    public int compareTo(OrderBean orderBean) {
     

        int result;
        if (order_id > orderBean.getOrder_id()) {
     
            result = 1;
        } else if (order_id < orderBean.getOrder_id()) {
     
            result = -1;
        } else {
     
            // 价格倒序排序
            result = price > orderBean.getPrice() ? -1 : 1;
        }
        return result;
    }

    @Override
    public void write(DataOutput out) throws IOException {
     

        out.writeInt(order_id);
        out.writeDouble(price);

    }

    @Override
    public void readFields(DataInput in) throws IOException {
     

        order_id = in.readInt();
        price = in.readDouble();

    }

    public int getOrder_id() {
     
        return order_id;
    }

    public void setOrder_id(int order_id) {
     
        this.order_id = order_id;
    }

    public double getPrice() {
     
        return price;
    }

    public void setPrice(double price) {
     
        this.price = price;
    }

    @Override
    public String toString() {
     
        return order_id + "\t" + price;
    }
}
  • 编写OrderMapper类
package com.lj.order;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
     

    OrderBean k = new OrderBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
     

        // 1 获取一行
        String line = value.toString();

        // 2 截取
        String[] fields = line.split("\t");

        // 3 封装对象
        k.setOrder_id(Integer.parseInt(fields[0]));
        k.setPrice(Double.parseDouble(fields[2]));

        // 4 写出
        context.write(k, NullWritable.get());
    }

}
  • 编写OrderGroupingComparator类
package com.lj.order;

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

public class OrderGroupingComparator extends WritableComparator {
     

    protected OrderGroupingComparator() {
     
        super(OrderBean.class, true);
    }

    @Override
    public int compare(WritableComparable a, WritableComparable b) {
     

        OrderBean aBean = (OrderBean) a;
        OrderBean bBean = (OrderBean) b;

        int result;
        if (aBean.getOrder_id() > bBean.getOrder_id()) {
     
            result = 1;
        } else if (aBean.getOrder_id() < bBean.getOrder_id()) {
     
            result = -1;
        } else {
     
            result = 0;
        }

        return result;
    }
}
  • 编写OrderReducer类
package com.lj.order;

import java.io.IOException;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;

public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
     

    @Override
    protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
     

        context.write(key, NullWritable.get());
    }
}
  • 编写OrderDriver类
package com.lj.order;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class OrderDriver {
     

    public static void main(String[] args) throws Exception, IOException {
     

        // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
        args = new String[] {
      "F:/HadoopTest/MapReduce/input/", "F:/HadoopTest/MapReduce/output" };

        // 1 获取配置信息
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        // 2 设置jar包加载路径
        job.setJarByClass(OrderDriver.class);

        // 3 加载map/reduce类
        job.setMapperClass(OrderMapper.class);
        job.setReducerClass(OrderReducer.class);

        // 4 设置map输出数据key和value类型
        job.setMapOutputKeyClass(OrderBean.class);
        job.setMapOutputValueClass(NullWritable.class);

        // 5 设置最终输出数据的key和value类型
        job.setOutputKeyClass(OrderBean.class);
        job.setOutputValueClass(NullWritable.class);

        // 6 设置输入数据和输出数据路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 8 设置reduce端的分组
        job.setGroupingComparatorClass(OrderGroupingComparator.class);

        // 7 提交
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

对以前的知识回顾,加深基础知识!
学习来自:尚硅谷大数据学习视频
每天进步一点点,也许某一天你也会变得那么渺小!!!

你可能感兴趣的:(#,Hadoop基础知识,mapreduce,hadoop)