- 【高级RAG技巧】使用二阶段检索器平衡检索的效率和精度
深度学习机器
大语言模型深度学习入门人工智能语言模型
一传统方法之前的文章已经介绍过向量数据库在RAG(RetrievalAugmentedGenerative)中的应用,本文将会讨论另一个重要的工具-Embedding模型。一般来说,构建生产环境下的RAG系统是直接使用Embedding模型对用户输入的Query进行向量化表示,并且从已经构建好的向量数据库中检索出相关的段落用户大模型生成。但是这种方法很明显会受到Embedding模型性能的影响,比
- 基于llama_cpp 调用本地模型(llama)实现基本推理
月光技术杂谈
大模型初探llamallama.cpppythonLLM集成显卡本地模型AI
零基础实践本地推理模型基本应用:基于llama_cpp的本地模型调用。本文先安装llama_cpppython库,再编写程序,利用其调用llama-2-7b-chat.Q4_K_M.ggu模型。背景llama_cpp是一个基于C++的高性能库(llama.cpp)的Python绑定,支持在CPU或GPU上高效运行LLaMA及其衍生模型(如LLaMA2),并通过量化技术(如GGUF格式)优化内存使用
- llama.cpp框架下GGUF格式及量化参数全解析
Black_Rock_br
人工智能
前言:在人工智能领域,语言模型的高效部署和推理一直是研究热点。随着模型规模的不断扩大,如何在有限的硬件资源上实现快速、高效的推理,成为了一个关键问题。`llama.cpp`框架以其出色的性能和灵活性,为这一问题提供了有效的解决方案。其中,GGUF格式和模型量化参数是实现高效推理的重要技术手段。本文将对`llama.cpp`框架下的GGUF格式及量化参数进行详细解析,帮助读者更好地理解和应用这些技术
- DeepSeek的发展背景与前景分析
盐都不盐
ai科技人工智能软件需求
DeepSeek(深度求索)作为中国人工智能领域的代表性企业,凭借其技术创新与战略布局,在短时间内迅速崛起,并在全球AI领域引发广泛关注。以下从发展背景与前景两个维度进行综合分析:一、发展背景1.创始团队与资源基础-DeepSeek成立于2023年7月,由量化投资公司幻方量化联合创始人梁文锋创立,核心团队汇聚了北大、清华等顶尖高校的博士及年轻人才,团队规模仅约140人,但效率极高。-幻方量化为其提
- 文本向量化-词嵌入方法系列1:静态词嵌入(Word2Vec+GloVe)
学习ml的小菜鸡
nlp自然语言处理word2vec
文本分散化表示指将语言表示成低维、稠密、连续的向量,分为静态嵌入和动态嵌入两种方式。静态词嵌入有Word2Vec,Sen2Vec,Doc2Vec,以及GloVe模型;而动态词嵌入有ELMO,Transformer,GPT,Bert和XLNet等等。本文主要对静态词嵌入方法做一个整体介绍,动态词嵌入会在系列2中更新。目录1.Word2Vec1.1CBOW1.2Skip-gram1.3Sen2Vec+
- 中小型企业如何选择合适的设备巡检系统?
无代码开发平台二维码
近年来,随着企业数字化转型的深入,中国企业对无代码平台的接受度显著提升,尤其在设备管理领域,二维码巡检系统因其低成本、易部署的特点迅速普及。据统计,类似草料二维码这样的轻量化平台已吸引数十万用户,覆盖制造、物业、消防等多个行业。中小企业往往设备数量有限、管理资源不足,传统的手工记录不仅效率低,还容易出错。而只需给设备贴上二维码,通过手机扫码就能完成巡检记录、拍照留证和数据汇总,显然是性价比极高的解
- 【大模型】DeepSeek-R1-Distill-Qwen部署及API调用
油泼辣子多加
大模型实战算法gptlangchain人工智能
DeepSeek-R1-Distill-Qwen是由中国人工智能公司深度求索(DeepSeek)开发的轻量化大语言模型,基于阿里巴巴的Qwen系列模型通过知识蒸馏技术优化而来。当前模型开源后,我们可以将其部署,使用API方式进行本地调用1.部署环境本文中的部署基础环境如下所示:PyTorch2.5.1Python3.12(ubuntu22.04)Cuda12.4GPURTX3090(24GB)*1
- PyBroker:利用 Python 和机器学习助力算法交易
skywalk8163
人工智能编程语言量化分析python机器学习算法
PyBroker:利用Python和机器学习助力算法交易你是否希望借助Python和机器学习的力量来优化你的交易策略?那么你需要了解一下PyBroker!这个Python框架专为开发算法交易策略而设计,尤其关注使用机器学习的策略。借助PyBroker,你可以轻松创建和微调交易规则,构建强大的模型,并深入了解你的策略表现。PyBroker介绍官方说明文档:利用PyBroker进行量化投资官方说明文档
- 嵌入式开发必读:RTOS选型指南与实例分析
大模型大数据攻城狮
arm开发嵌入式面试嵌入式面经RTOSFreeRTOSNuttXVxWorks
目录一、实时操作系统(RTOS)概述1.1实时性的核心定义1.2关键技术指标指标详解不同RTOS的指标表现1.3RTOS与通用OS的本质区别实例对比使用通用OS的后果二、RTOS选型的重要性三、RTOS选型的关键因素1.实时性要求实时性要求量化分析2.系统资源3.功能需求4.开发工具和支持和开发效率对比5.商业支持和社区活跃度四、常见的RTOS及其适用场景1.FreeRTOS2.VxWorks3.
- 解锁激光焊接新境界:填丝/填粉自适应技术大揭秘
计算机学长
激光控制激光焊接激光
激光焊接的品质之重在现代制造业的宏大版图中,激光焊接已然成为一股不可或缺的关键力量,深深扎根于众多核心领域。从汽车制造的精密车身架构搭建,到航空航天飞行器的关键部件连接,再到电子设备的微型化精密组装,激光焊接以其独特的技术优势,为这些行业的高效生产和产品性能提升提供了坚实保障。在汽车制造领域,激光焊接能够实现车身零部件的高精度连接,有效提升车身的结构强度与刚性,同时降低车身重量,为汽车的轻量化设计
- 炒股开户资金要求是多少?不同证券公司是否有区别?
股票程序化交易接口
量化交易股票API接口Python股票量化交易炒股开户资金要求证券公司股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>开户资金的组成部分炒股开户的资金要求包含多个方面。首先是用于购买股票的资金,这是最直接的部分。投资者需要有一定资金才能买入股票。其次是可能存在的账户管理费等费用的预留资金。有些证券公司会收取一定的账户管理费用,如果没有预留这部分资金,
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- YOLOv7-Tiny:轻量化实时目标检测的革新实践
追寻向上
YOLO目标检测人工智能
一、模型定位与核心优势YOLOv7-Tiny作为YOLOv7系列的轻量级版本,专为边缘计算设备和实时检测场景设计。相比标准YOLOv7,其参数量减少约60%(仅6.02M),计算量降至13.2GFLOPs,在保持较高检测精度的同时,推理速度提升至68FPS(NVIDIAV100)。该模型适用于无人机、嵌入式设备、移动端等资源受限场景,在实时性与精度之间实现了极佳平衡。二、模型架构创新主干网络优化深
- 大模型与图数据库RAG通俗流程拆解
gallonyin
产品笔记AI知识图谱
图构建(略)neo4j、tugraph等均可,不影响GraphRAG核心框架模型向量化模型bce-embedding-base_v1重排序模型bce-reranker-base_v1大语言模型Qwen/Qwen2.5-32B-Instruct图数据库tugraph索引faiss核心流程这个调用链日志展示了一个完整的问答系统处理用户输入“百草园里有什么”的过程。本项目使用和参考了开源项目茴香豆。以下
- 迅投miniQMT量化交易之【网格交易】的实现(八)——init_db_tables()方法
QMT量化交易
量化交易数据库python量化交易miniQMT
和大家一起分享如何使用miniQMT实现我们自己的网格交易系统。如果您对量化交易感兴趣,欢迎一起交流。特别声明:本文只从技术层面介绍如何通过miniQMT实现网格交易,尽管相关代码已经笔者实盘验证,但笔者不对读者的实际盈亏负责。本专栏其他文章:使用迅投miniQMT实时监控同花顺自选股,实现自动交易使用python获取同花顺免费版和同花顺远航版自选股数据用于量化交易使用python将选股策略选股结
- 迅投miniQMT实盘大单拆单批量下单方法的实现
QMT量化交易
量化交易python量化交易miniQMT
前面介绍了如何利用迅投miniQMT实现同花顺自选股的盘中实时监控方法,本文和大家一起分享如何利用迅投miniQMT在实盘中实现大单拆单批量下单。特别提示:本文只从技术层面介绍如何实现大单拆单进行批量下单,不对读者的实际盈亏负责。进行实盘下单前,请务必检查好各参数!本专栏文章:使用迅投miniQMT实时监控同花顺自选股,实现自动交易使用python获取同花顺免费版和同花顺远航版自选股数据用于量化交
- Python在数字货币交易中的算法设计:从策略到实践
Echo_Wish
Python!实战!python算法开发语言
Python在数字货币交易中的算法设计:从策略到实践随着区块链技术的发展和加密货币市场的繁荣,数字货币交易已经成为金融领域的一个重要分支。从个体投资者到量化基金,算法交易(AlgorithmicTrading)正在为提高交易效率和决策质量提供强大的支撑。在这些技术应用中,Python凭借其丰富的生态系统和简洁的语法,成为开发交易算法的首选语言。今天,我将带你深度探讨Python在数字货币交易中的算
- 使用 llama.cpp 框架进行 RWKV 模型的推理
步子哥
AGI通用人工智能llama人工智能
欢迎来到RWKV推理文档的世界!在这里,我们将一起探索如何使用llama.cpp框架进行RWKV模型的推理,仿佛在进行一场科技的冒险之旅。准备好了吗?让我们一起揭开神秘的面纱吧!什么是llama.cpp?Llama.cpp是一个轻量化的大语言模型运行框架,专门为在CPU上优化模型性能而设计。如果你曾经觉得CPU的处理速度像在慢动作中走路,那么你一定会喜欢这个工具!它让RWKV-6模型的运行像一阵微
- 如何在移动端优化ALU,降低手机发热和功耗 高级TA必看指数★★★★☆
熊猫悟道
unityshader材质着色器unity游戏引擎
最近工作中,未了进一步提升美术渲染效果,不得已我们需要从数学的角度优化我们的图形渲染,减少不必要的ALU和MUL,从而提升运行效率。提供更多的渲染效果支持。当然,虽然我们游戏现在发热已经控制的比较完美了,但是我们还能从硬件级优化。接下来就是我这段时间用了半斤头发研究出来的方案。绝对干货,优化图形这块照搬即可。总结一下,可能的优化步骤包括:减少复杂数学运算,使用近似或预计算。优化向量化运算,利用SI
- 8.6 “6.7GB→3.9GB!“Facebook OPT模型4-bit量化实战:显存狂降85%教程
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
6.7GB→3.9GB!FacebookOPT模型4-bit量化实战:显存狂降85%教程实战FacebookOPT模型量化模型量化原理与技术选型在模型量化实战前,我们需要理解OPT模型的显存占用特点。以OPT-6.7B模型为例,其参数量为6.7B,每个参数默认使用FP32(4字节)存储时,显存占用计算公式为:显存占用=参数量×数据类型字节数=6.7B×4B=26.8GB当前主流的量化技术路线对比如
- DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能python
DeepSeekR1-32B微调实战指南├──1.环境准备│├──1.1硬件配置││├─全参数微调:4*A10080GB││└─LoRA微调:单卡24GB│├──1.2软件依赖││├─PyTorch2.1.2+CUDA││└─Unsloth/ColossalAI│└──1.3模型加载│├─4bit量化加载│└─FlashAttention2加速├──2.数据集构建│├──2.1数据源││├─CMD
- 如何评价研发部门的人效
研发
研发部门人效评价的核心在于:明确评估指标、量化绩效数据、结合定性分析、持续改进流程。其中,明确评估指标是基础,只有设定清晰、可量化的指标,才能有效衡量团队和个人的绩效。例如,设定每个项目的交付周期、缺陷率、代码覆盖率等指标,有助于全面评估研发人员的工作效率和质量。在实际操作中,明确评估指标需要根据企业的战略目标和研发特点进行定制。例如,对于以创新为驱动的企业,可以将创新成果的数量和质量作为重要指标
- 数学建模——层次分析法 AHP(Python代码)
奋斗小青年Lv1.0
数学建模python
层次分析法层次分析法是由美国运筹学家、匹兹堡大学教授T.L.Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法,是在充分研究了人类思维过程的基础上提出来的,它较合理地解决了定性问题定量化的处理过程。AHP的主要特点是通过建立递阶层次结构,把人类的判断转化到若干因素两两之间重要度的比较上,从而把难于量化的定性判断转化为可操作的重要度的比较上面。步骤第一步构造系统的递阶层次结构构造目标
- 阿里Qwen-1.8B的介绍和下载部署详细步骤
大数据追光猿
大模型语言模型pythontransformer人工智能dockerjupyter深度学习
一、Qwen-1.8B的介绍Qwen-1.8B是阿里云推出的通义千问系列中的一个轻量化版本,参数量为18亿(1.8B)。相比于更大规模的模型(如Qwen-7B或Qwen-14B),Qwen-1.8B在性能和资源需求之间取得了较好的平衡,适合在消费级硬件上运行或微调。1.Qwen-1.8B的特点(1)轻量化设计参数量:18亿参数,相较于超大规模模型(如Qwen-7B或Qwen-14B),参数量适中。
- python量化数据15:计算同花顺涨停次日涨跌幅表现
ETF股债基指标
linux运维服务器
一、环境安装pipinstallpandaspipinstallrequestspipinstallmootdx二、代码frommootdx.quotesimportQuotesimportpandasaspdimportrequestsimporttimeimportjsonclient=Quotes.factory(market='std')defget_open_limit_pool(dat
- python量化数据8:计算东方财富KDJ指标数值金叉死叉
ETF股债基指标
python开发语言
一、KDJ计算公式K:SMA(RSV,5,1);D:SMA(K,M1,1);J:3*K-2*D;defKDJ(CLOSE,HIGH,LOW,N=9,M1=3,M2=3):'''超卖超买类RSV赋值:(收盘价-N日内最低价的最低值)/(N日内最高价的最高值-N日内最低价的最低值)*100输出K:RSV的M1日[1日权重]移动平均输出D:K的M2日[1日权重]移动平均输出J:3*K-2*D'''RSV
- 量化策略之小红的心意
蘑菇吃饱了
python人工智能数据挖掘回归算法
在一个班级里有四个同学,女生是小红,还有三个男生小A、小B和小C。这三个男生都认为小红喜欢自己,且他们仨都想谈恋爱,所以都希望在不暴露自己的情况下了解小红的心意。小A想了个办法,他首先假设小红不喜欢自己,然后只需要尝试女生在不喜欢自己的情况下做了哪些不平常的事情,比如同意看电影之类的举动。就能反向证明小红对自己的喜欢,就算最后的结果是没同意,那两人也没撕破脸,还能做朋友。小B也想了个办法,他只需要
- YOLOv12改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率(二次改进A2C2f)
Limiiiing
YOLOv12改进专栏YOLOv12计算机视觉深度学习目标检测
一、本文介绍本文记录的是基于MobileMQA模块的YOLOv12目标检测改进方法研究。MobileNetv4中的MobileMQA模块是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。文章目录一、本文介绍二、MobileMQA注意力原理三、MobileMQA的实现代码四、创新模块4.1改进点⭐五、添加步骤5.1修改一5.2修改
- 量化企业间合作关系、竞争关系和资源流动
Atlas Shepherd
python算法人工智能
用于计算不同类型的权重、校正度中心性以及模块增益。公式被用来量化企业间合作关系、竞争关系和资源流动的程度,并通过分析网络结构来识别产业链中的关键企业和集群合作权重(W_cooperation)公式:Wcooperation(i,j)=α⋅max(freq)freq(i,j)+β⋅max(amount)amount(i,j)+γ⋅max(duration)duration(i,j)⋅e−δ(t−tl
- 向量数据库及其在大模型应用落地中的作用
一望无际的大草原
高级数据应用读书笔记工作总结数据库向量数据库解决方案
一、几个术语需要弄清楚几个术语,比如向量、Embedding、向量检索、向量数据库,具体如下。1.向量:为AI理解世界的通用数据形式,是多模态数据的压缩,任何模态数据都可以转为向量。文本直接送给计算机是无法认识的,而且是高维数据,需要对其进行向量化处理(即Embedding),处理完成后就形成一个个向量。2.Embedding:将文字文本转化为保留语义关系的向量文本,相当于利用embedding模
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round