使用CNN对CIFAR-10数据集进行分类(tensorflow)

一、CIFAR10数据集

如果下载不了就直接 官网下载CIFAR-10数据集 http://www.cs.toronto.edu/~kriz/cifar.html

下载 CIFAR-10 binary version,解压后文件夹如下

                                   使用CNN对CIFAR-10数据集进行分类(tensorflow)_第1张图片

 

二、CIFAR10数据集官方读取程序(cifar10_input.py)

"""Routine for decoding the CIFAR-10 binary file format."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
# 原图像的尺度为32*32,但根据常识,信息部分通常位于图像的中央,
# 这里定义了以中心裁剪后图像的尺寸
IMAGE_SIZE = 24

# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 10
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000


def read_cifar10(filename_queue):
    """Reads and parses examples from CIFAR10 data files.
    Recommendation: if you want N-way read parallelism, call this function
    N times.  This will give you N independent Readers reading different
    files & positions within those files, which will give better mixing of
    examples.
    Args:
      filename_queue: A queue of strings with the filenames to read from.
    Returns:
      An object representing a single example, with the following fields:
        height: number of rows in the result (32)
        width: number of columns in the result (32)
        depth: number of color channels in the result (3)
        key: a scalar string Tensor describing the filename & record number
          for this example.
        label: an int32 Tensor with the label in the range 0..9.
        uint8image: a [height, width, depth] uint8 Tensor with the image data
    """

    # 定义一个空的类对象,类似于c语言里面的结构体定义
    class CIFAR10Record(object):
        pass

    result = CIFAR10Record()

    # Dimensions of the images in the CIFAR-10 dataset.
    # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
    # input format.
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3
    # 一张图像占用空间
    image_bytes = result.height * result.width * result.depth
    # Every record consists of a label followed by the image, with a
    # fixed number of bytes for each.
    # 数据集中一条记录的组成
    record_bytes = label_bytes + image_bytes

    # Read a record, getting filenames from the filename_queue.  No
    # header or footer in the CIFAR-10 format, so we leave header_bytes
    # and footer_bytes at their default of 0.
    # 定义一个Reader,它每次能从文件中读取固定字节数
    reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
    # 返回从filename_queue中读取的(key, value)对,key和value都是字符串类型的tensor,并且当队列中的某一个文件读完成时,该文件名会dequeue
    result.key, value = reader.read(filename_queue)

    # Convert from a string to a vector of uint8 that is record_bytes long.
    # 解码操作可以看作读二进制文件,把字符串中的字节转换为数值向量,每一个数值占用一个字节,在[0, 255]区间内,因此out_type要取uint8类型
    record_bytes = tf.decode_raw(value, tf.uint8)  # 将字符串Tensor转化成uint8类型

    # The first bytes represent the label, which we convert from uint8->int32.
    # 从一维tensor对象中截取一个slice,类似于从一维向量中筛选子向量,因为record_bytes中包含了label和feature,故要对向量类型tensor进行'parse'操作
    result.label = tf.cast(
        tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)  # 分别表示待截取片段的起点和长度,并且把标签由之前的uint8转变成int32数据类型

    # The remaining bytes after the label represent the image, which we reshape.
    # from [depth * height * width] to [depth, height, width].
    # 提取每条记录中的图像数据为result.depth, result.height, result.width
    depth_major = tf.reshape(
        tf.strided_slice(record_bytes, [label_bytes],
                         [label_bytes + image_bytes]),
        [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    # 改变为height, width, depth
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])

    return result


# 构建一个排列后的一组图片和分类
def _generate_image_and_label_batch(image, label, min_queue_examples,
                                    batch_size, shuffle):
    """Construct a queued batch of images and labels.
    Args:
      image: 3-D Tensor of [height, width, 3] of type.float32.
      label: 1-D Tensor of type.int32
      min_queue_examples: int32, minimum number of samples to retain
        in the queue that provides of batches of examples.
      batch_size: Number of images per batch.
      shuffle: boolean indicating whether to use a shuffling queue.
    Returns:
      images: Images. 4D tensor of [batch_size, height, width, 3] size.
      labels: Labels. 1D tensor of [batch_size] size.
    """
    # Create a queue that shuffles the examples, and then
    # read 'batch_size' images + labels from the example queue.
    # 线程数
    num_preprocess_threads = 16
    # 布尔指示是否使用一个shuffling队列
    if shuffle:
        images, label_batch = tf.train.shuffle_batch(
            [image, label],
            batch_size=batch_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_size,
            min_after_dequeue=min_queue_examples)
    else:
        # tf.train.batch(tensors, batch_size, num_threads=1, capacity=32,
        # enqueue_many=False, shapes=None, dynamic_pad=False,
        # allow_smaller_final_batch=False, shared_name=None, name=None)
        # 这里是用队列实现,已经默认使用enqueue_runner将enqueue_runner加入到Graph'senqueue_runner集合中
        # 其默认enqueue_many=False时,输入的tensor为一个样本【x,y,z】,输出为Tensor的一批样本
        # capacity:队列中允许最大元素个数
        images, label_batch = tf.train.batch(
            [image, label],
            batch_size=batch_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_size)

    # Display the training images in the visualizer.
    # 将训练图片可视化,可拱直接检查图片正误
    tf.summary.image('images', images)

    return images, tf.reshape(label_batch, [batch_size])


# 为CIFAR评价构建输入
# data_dir路径
# batch_size一个组的大小
def distorted_inputs(data_dir, batch_size):
    """Construct distorted input for CIFAR training using the Reader ops.
    Args:
      data_dir: Path to the CIFAR-10 data directory.
      batch_size: Number of images per batch.
    Returns:
      images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
      labels: Labels. 1D tensor of [batch_size] size.
    """
    filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
                 for i in xrange(1, 6)]
    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a queue that produces the filenames to read.
    filename_queue = tf.train.string_input_producer(filenames)

    # Read examples from files in the filename queue.
    read_input = read_cifar10(filename_queue)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    # Image processing for training the network. Note the many random
    # distortions applied to the image.

    # Randomly crop a [height, width] section of the image.
    distorted_image = tf.random_crop(reshaped_image, [height, width, 3])

    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)

    # Because these operations are not commutative, consider randomizing
    # the order their operation.
    # NOTE: since per_image_standardization zeros the mean and makes
    # the stddev unit, this likely has no effect see tensorflow#1458.
    distorted_image = tf.image.random_brightness(distorted_image,
                                                 max_delta=63)
    distorted_image = tf.image.random_contrast(distorted_image,
                                               lower=0.2, upper=1.8)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_standardization(distorted_image)

    # Set the shapes of tensors.
    # 设置张量的型
    float_image.set_shape([height, width, 3])
    read_input.label.set_shape([1])

    # Ensure that the random shuffling has good mixing properties.
    # 确保洗牌的随机性
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                             min_fraction_of_examples_in_queue)
    print('Filling queue with %d CIFAR images before starting to train. '
          'This will take a few minutes.' % min_queue_examples)

    # Generate a batch of images and labels by building up a queue of examples.
    return _generate_image_and_label_batch(float_image, read_input.label,
                                           min_queue_examples, batch_size,
                                           shuffle=True)


# 为CIFAR评价构建输入
# eval_data使用训练还是评价数据集
# data_dir路径
# batch_size一个组的大小
def inputs(eval_data, data_dir, batch_size):
    """Construct input for CIFAR evaluation using the Reader ops.
    Args:
      eval_data: bool, indicating if one should use the train or eval data set.
      data_dir: Path to the CIFAR-10 data directory.
      batch_size: Number of images per batch.
    Returns:
      images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
      labels: Labels. 1D tensor of [batch_size] size.
    """
    if not eval_data:
        filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
                     for i in xrange(1, 6)]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
    else:
        filenames = [os.path.join(data_dir, 'test_batch.bin')]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL

    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    # Create a queue that produces the filenames to read.
    # 文件名队列
    # def string_input_producer(string_tensor,
    # num_epochs=None,
    # shuffle=True,
    # seed=None,
    # capacity=32,
    # shared_name=None,
    # name=None,
    # cancel_op=None):
    # 根据上面的函数可以看出下面的这个默认对输入队列进行shuffle,string_input_producer返回的是字符串队列,
    # 使用enqueue_runner将enqueue_runner加入到Graph'senqueue_runner集合中
    filename_queue = tf.train.string_input_producer(filenames)

    # Read examples from files in the filename queue.
    # 从文件队列中读取解析出的图片队列
    # read_cifar10从输入文件名队列中读取一条图像记录
    read_input = read_cifar10(filename_queue)
    # 将记录中的图像记录转换为float32
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    # Image processing for evaluation.
    # Crop the central [height, width] of the image.
    # 将图像裁剪成24*24
    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           height, width)

    # Subtract off the mean and divide by the variance of the pixels.
    # 对图像数据进行归一化
    float_image = tf.image.per_image_standardization(resized_image)

    # Set the shapes of tensors.
    float_image.set_shape([height, width, 3])
    read_input.label.set_shape([1])

    # Ensure that the random shuffling has good mixing properties.
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(num_examples_per_epoch *
                             min_fraction_of_examples_in_queue)

    # Generate a batch of images and labels by building up a queue of examples.
    # 根据当前记录中第一条记录的值,采用多线程的方法,批量读取一个batch中的数据
    return _generate_image_and_label_batch(float_image, read_input.label,
                                           min_queue_examples, batch_size,
                                           shuffle=False)

三、训练程序

 输入层—>卷积层1(最大池化)—>卷积层2(最大池化)—>全连接1—>全连接2—>全连接3—>输出层

#coding:utf-8
import cifar10_input
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import time

start =time.clock()           #取开始时间
step = []                       #step,test_accuracy,training_accuracy均为列表,为保存训练精度曲线的数据
test_accuracy = []
training_accuracy = []
batch_size = 2500   #每次喂入2500个样本,去这个值,在程序运行时CPU的使用率大概在95%,不让CPU满载,
keep_prob = tf.placeholder("float")
#加入指数衰减学习率
LEARNING_RATE_BASE = 0.001 #最初学习率
LEARNING_RATE_DECAY = 0.999 #学习率衰减率
LEARNING_RATE_STEP \
    = 50000/batch_size#喂入多少轮BATCH_SIZE后,更新一次学习率,一般设为:总样本数/BATCH_SIZE
#运行了几轮BATCH_SIZE的计数器,初值给0,设为不被训练
global_step = tf.Variable(0, trainable=False)

data_dir = 'C:/tmp/cifar10_data/cifar-10-batches-bin'#cifar数据集的地址

with tf.device('/cpu:0'):           #如果没有这一行数据增强时,将会在Gpu上进行,会特别慢
    images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir,batch_size=batch_size)#训练时随机进行数据增强(翻转)
    #images_train, labels_train = cifar10_input.inputs(eval_data = False,data_dir = data_dir, batch_size = batch_size)#训练时直接进行训练
    images_test, labels_test = cifar10_input.inputs(eval_data = True, data_dir = data_dir, batch_size = batch_size)

def weight_variable(shape):        #权重变量
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):           #阈值变量
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
  
def conv2d(x, W):                      #卷积层变量(2D)
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):                   #池化层变量
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')  
                        
def avg_pool_6x6(x):                    #池化层变量
    return tf.nn.avg_pool(x, ksize=[1, 6, 6, 1],
                        strides=[1, 6, 6, 1], padding='SAME')

#搭建神经网络  输入层——>卷积层1(最大池化)——>卷积层2(最大池化)——>全连接1——>全连接2——>全连接3——>输出层
x = tf.placeholder(tf.float32, [None, 24,24,3]) # 维度 24*24
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 数字=> 10 classes

W_conv1 = weight_variable([5, 5, 3, 64])
b_conv1 = bias_variable([64])
x_image = tf.reshape(x, [-1,24,24,3])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 64, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([6 * 6 * 64, 256])
b_fc1 = bias_variable([256])
h_pool2_flat = tf.reshape(h_pool2, [-1, 6*6*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([256, 512])
b_fc2 = bias_variable([512])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)

W_fc3 = weight_variable([512, 128])
b_fc3 = bias_variable([128])
h_fc3 = tf.nn.relu(tf.matmul(h_fc2_drop, W_fc3) + b_fc3)
h_fc3_drop = tf.nn.dropout(h_fc3, keep_prob)

W_fc4 = weight_variable([128, 10])
b_fc4 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc3_drop, W_fc4) + b_fc4)
#指数衰减学习率
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,
                                           LEARNING_RATE_STEP, LEARNING_RATE_DECAY, staircase=True)

#cross_entropy = -tf.reduce_sum(y*tf.log(y_conv))   #不使用正则化的交叉熵
reg = 0.1
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y)) \
                 + tf.nn.l2_loss(W_fc1)*reg + tf.nn.l2_loss(W_fc2)*reg
#不同的优化方法测测效果
#train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy,global_step=global_step)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy,global_step=global_step)
#train_step = tf.train.AdagradOptimizer(learning_rate).minimize(cross_entropy,global_step=global_step)

correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

sess = tf.Session()
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess=sess)
for i in range(10000):
    image_batch, label_batch = sess.run([images_train, labels_train])
    label_b = np.eye(10, dtype=float)[label_batch]  # one hot
    train_step.run(feed_dict={x: image_batch, y: label_b, keep_prob: 0.8}, session=sess)

    if i % 10 == 0:
        step.append(i)
        train_acc = accuracy.eval(feed_dict={
        x: image_batch, y: label_b, keep_prob: 1.0}, session=sess)
        print("step %d, training accuracy %g " % (i, train_acc))
        print(sess.run(learning_rate))
        training_accuracy.append(train_acc)
        image_batch, label_batch = sess.run([images_test, labels_test])     #训练中不断测试
        label_b = np.eye(10, dtype=float)[label_batch]  # one hot
        test_acc = accuracy.eval(feed_dict={
                x: image_batch, y: label_b, keep_prob: 1.0}, session=sess)
        print("test accuracy %g" % test_acc)
        test_accuracy.append(test_acc)

end = time.clock()    #结束时间
Running_time=float(end-start)/60       #计算分钟,
print('Running time: %g 分钟'% float(Running_time))
plt.plot(step, test_accuracy)    #显示图形
plt.plot(step, training_accuracy)
plt.show()

writer = tf.summary.FileWriter("./tensorBoard",sess.graph)
writer.close()

四、结果

step 9990, training accuracy 0.7488 
0.00060698984
test accuracy 0.7464
Running time: 27.4042 分钟

                                使用CNN对CIFAR-10数据集进行分类(tensorflow)_第2张图片

tensorBoard的可视化

网络搭建的不好,并没看出来什么,

 

你可能感兴趣的:(CIFAR-10,卷积神经网络,tensorflow,数据增强)