- 基于ssm的林木生长管理系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在我们的日常生活中,森林资源的管理和保护是一个重要的环保议题。为了有效地管理森林资源,许多科研机构和政府部门正在寻找更高效的技术手段。这就是我们今天要讨论的主题:基于SSM的林木生长管理系统。SSM是SpringMVC、Spring和MyBatis三个开源框架的缩写。这三个框架在Java开发中被广泛使用,因为它们可以提供一种简单、高效的方式来开发和维护复杂的Web应用程序。在这篇文章中
- 对比与详解:QR 分解、奇异值分解(SVD)与 Schur 分解及其他可产生正交基的方法
DuHz
机器学习人工智能信号处理算法矩阵信息与通信线性代数
对比与详解:QR分解、奇异值分解(SVD)与Schur分解及其他可产生正交基的方法在数值线性代数与矩阵分析中,常见的能产生正交(或酉)矩阵的分解方法包括QR分解、奇异值分解(SVD)、Schur分解等。这些方法虽然都会产生一个(或多个)正交矩阵,但它们在适用范围、分解形式、计算重点和应用场景等方面各不相同。本文将尽量对这些分解方法进行系统地介绍与对比。1.正交矩阵(Orthogonal/Unita
- JVM垃圾回收器全面解析:从核心概念到选型指南
Debug Your Career
面试jvmjava
一、引言在Java应用运行过程中,垃圾回收(GarbageCollection,GC)是内存管理的核心机制,直接影响程序性能。JVM提供了多种垃圾回收器,适用于不同场景。本文将系统梳理主流垃圾回收器的工作原理、适用场景及选型策略。二、GC核心概念分代收集:堆内存分为新生代(YoungGeneration)和老年代(OldGeneration),采用不同回收策略。STW(Stop-The-World
- 【DNN量化工具】QKeras 工具简介
kanhao100
笔记dnn人工智能神经网络
QKeras工具简介QKeras是一个用于量化深度学习模型的Keras扩展库,旨在使深度学习模型的量化(即将模型的浮点权重转换为低精度格式)变得简单而高效。QKeras主要目标是优化模型的存储和推理速度,特别适用于需要在资源受限的设备(如移动设备和嵌入式系统)上运行深度学习模型的场景。QKeras的主要特点量化支持:QKeras提供了对不同类型量化的支持,包括权重量化和激活量化。用户可以根据需求选
- DeepSeek来袭!低代码+AI竟让程序员摸鱼接私单月入5W!
工业甲酰苯胺
低代码人工智能
目录一、引言:开启低代码+AI新时代二、DeepSeek与低代码、AI的关联(一)DeepSeek简介(二)低代码开发概述(三)AI赋能低代码三、低代码+AI开启私单赚钱大门(一)成功案例剖析(二)私单项目类型(三)赚钱模式解析四、实战:利用DeepSeek接私单(一)工具准备与环境搭建(二)需求分析与项目规划(三)低代码开发实战(四)AI技术融合应用(五)项目测试与交付五、挑战与应对策略(一)技
- 亿级分布式系统架构演进实战(七)- 横向扩展(安全防护设计)
power-辰南
java技术架构师成长专栏springboot分布式架构设计高并发安全防护
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)亿级分布式系统架构演进实战(三)-横向扩展(数据库读写分离)亿级分布式系统架构演进实战(四)-横向扩展(负载均衡与弹性伸缩)亿级分布式系统架构演进实战(五)-横向扩展(缓存策略设计)亿级分布式系统架构演进实战(六)-横向扩展(监控与日志体系)核心目标保障系统免受攻击,确保数据安全一、安全防护设计1.
- 亿级分布式系统架构演进实战(一)- 总体概要
power-辰南
java技术架构师成长专栏高并发分布式系统微服务架构设计springcloud
前言不说废话,这次分享是某500强企业真实亿级流量业务中台技术架构演进过程实战。核心目标构建一个兼具高性能、高可用、强一致性的分布式系统,支撑亿级流量场景下的稳定运行。演进路线大纲阶段一:横向扩展(应对万级QPS)核心目标:突破单机性能瓶颈,建立弹性基础[Nginx]/|\[App1][App2][App3]←无状态服务集群\|/[DBProxy]←读写分离中间件/\[Master]←写节点[Sl
- 亿级分布式系统架构演进实战(三)- 横向扩展(数据库读写分离)
power-辰南
java技术架构师成长专栏数据库mysql分布式系统springcloud架构设计
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)核心目标分散数据库压力,提升读性能1.数据库架构设计数据库由原理的单实例变成主从模式,主主要负责写,从负责读。1.1主从角色定义节点类型数据流向核心职责主库读写(Write)处理事务性写操作(INSERT/UPDATE/DELETE)/部分读从库只读(Read)承担查询请求(SELECT),支持水平
- 自动驾驶中间件技术辨析:ROS、Apex.Grace、DDS、AutoSAR和AutoSAR Adaptive
赛卡
自动驾驶中间件人工智能
在自动驾驶技术的演进中,中间件作为连接硬件、操作系统与应用软件的核心枢纽,其安全性、实时性和可扩展性至关重要。当前市场上主流的中间件技术包括ROS/ROS2、Apex.Grace(Apex.OS)、DDS、AutoSAR(经典平台CP)和AutoSARAdaptive(自适应平台AP)。这些技术各有特点,但也存在交叉与互补。本文将从功能定位、技术架构、安全认证和应用场景等方面,深入分析它们的联系与
- 金融、教育等行业如何高效利用wangEditor实现word文档网页化编辑?
2501_90699850
金融wordumeditor粘贴wordueditor粘贴wordueditor复制wordueditor上传word图片ueditor导入word
要求:开源,免费,技术支持编辑器:wangEditor前端:vue2,vue3,vue-cli,html5后端:java,jsp,springboot,asp.net,php,asp,.netcore,.netmvc,.netform群体:学生,个人用户,外包,自由职业者,中小型网站,博客,场景:数字门户,数字中台,站群,内网,外网,信创国产化环境,web截屏行业:医疗,教育,建筑,政府,党政,国
- 亿级分布式系统架构演进实战(五)- 横向扩展(缓存策略设计)
power-辰南
java技术架构师成长专栏多级缓存策略springcloud分布式系统缓存一致性高并发缓存问题解决方案
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)亿级分布式系统架构演进实战(三)-横向扩展(数据库读写分离)亿级分布式系统架构演进实战(四)-横向扩展(负载均衡与弹性伸缩)核心目标降低数据库读压力,提升响应速度一、多级缓存架构客户端CDN/浏览器缓存本地应用缓存分布式缓存数据库缓冲池1.1客户端缓存缓存数据类型:•静态资源(JS/CSS/图片)•
- 【轻松学C:编程小白的大冒险】— 09 运算符与表达式的实际应用
秋知叶i
#C语言c语言开发语言
在编程的艺术世界里,代码和灵感需要寻找到最佳的交融点,才能打造出令人为之惊叹的作品。而在这座秋知叶i博客的殿堂里,我们将共同追寻这种完美结合,为未来的世界留下属于我们的独特印记。【轻松学C:编程小白的大冒险】—09运算符与表达式的实际应用一、运算符家族大阅兵二、算术运算符:数学界的五虎上将1.加法运算符`+`2.减法运算符`-`3.乘法运算符`*`4.除法运算符`/`5.取模运算符`%`二、赋值运
- 高级前端面试题-React
圣诞小子
javascript面试
react概念类组件和函数组件,什么时候用类组件获取组件实例类组件如何实现逻辑复用?高阶组件、renderprops选择hooks的优点状态逻辑复用;状态逻辑集中,易于理解;类组件不利于优化,比如不能很好的压缩为什么要用hooks,解决了什么问题同上react的context的使用场景共享对一个组件树全局的信息,不需要一层层传参受控组件和非受控组件非受控组件:数据只保存在内部state中;受控组件
- 设计模式之工厂模式的优缺点
C++ 老炮儿的技术栈
算法c++学习笔记
工厂模式是一种创建对象的设计模式,它将对象的创建和使用分离。以下是工厂模式的优缺点:优点-解耦对象的创建和使用:使得代码的依赖关系更加清晰,使用者不需要了解对象的具体创建过程,只需要关心如何使用对象,降低了代码的耦合度。-提高可维护性和可扩展性:当需要创建新的对象或者修改对象的创建逻辑时,只需要在工厂类中进行修改,而不需要在所有使用该对象的地方进行修改,便于代码的维护和扩展。-便于代码复用:工厂类
- 大模型在冠心病风险预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习python
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、大模型预测冠心病风险原理与方法2.1数据收集与预处理2.1.1数据来源2.1.2数据清洗与整理2.2特征工程2.2.1特征提取2.2.2特征选择与优化2.3模型选择与训练2.3.1常用模型介绍2.3.2模型训练过程三、术前风险预测与手术方案制定3.1术前风险预测指标与模型应用3.2基于风险预测的手术方案制定3.3案例分析
- 虚拟机如何扩容磁盘
克里斯蒂亚诺罗纳尔多阿维罗
运维linux服务器
在日常的虚拟化环境中,虚拟机的磁盘空间不足是一个常见的问题。当虚拟机磁盘空间不够用时,扩容磁盘是一个常见的解决方案。本文将详细介绍如何在虚拟机中扩容磁盘,包含操作步骤,并解释在扩容过程中为什么可以直接删除原有分区。步骤1:扩容虚拟机磁盘首先,我们需要在虚拟化平台上扩展虚拟机的磁盘大小。以下是两种常见虚拟化平台(VMware和VirtualBox)扩容磁盘的步骤:VMware打开VMware管理控制
- OpenCV图像拼接(2)基于羽化(feathering)技术的图像融合算法拼接类cv::detail::FeatherBlender
村北头的码农
OpenCVopencv算法人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::FeatherBlender是OpenCV中用于图像拼接的一个类,它属于stitching模块的一部分。这个类实现了基于羽化(feathering)技术的图像融合算法,用于平滑地混合重叠区域中的图像,从而生成无缝的全景图。主要特点羽化技术:
- LakeHouse湖仓一体成为下一站灯塔,数仓、数据湖架构即将退出群聊
科杰科技
大数据数据仓库
摘要:当前的大数据技术应用趋势表明,客户对单一的数据湖和数仓架构并不满意。近年来几乎所有的数据仓库都增加了对Parquet和ORC格式的外部表支持,这使数仓用户可以从相同的SQL引擎查询数据湖表,但它不会使数据湖表更易于管理,也不会消除仓库中数据的ETL复杂性、陈旧性和高级分析挑战。KeenDataLakeHouse(湖仓一体)作为新一代大数据技术架构,将逐渐取代单一数据湖和数仓架构,成为大数据架
- 探索Sfm-python: 一款强大的计算机视觉库
缪昱锨Hunter
探索Sfm-python:一款强大的计算机视觉库去发现同类优质开源项目:https://gitcode.com/在计算机视觉领域,Sfm-python是一个值得关注的开源项目,它以简洁高效的Python接口提供结构化从运动(StructurefromMotion,SfM)算法。如果你对3D重建、图像匹配或地理定位有兴趣,那么这个项目将是你不可或缺的工具。让我们一起深入了解一下它的技术细节、应用场景
- 如何提升 API 性能:来自 Java 和测试开发者的优化建议
你正在听你最喜欢的歌曲,测试你使用编写的新API。但等你听完一整首歌,API还没响应。哎呀!这是一个巨大的警告信号——是时候优化你的API响应时间了。让我们深入了解一些加速方法,让你的API跟你最喜欢的吉他独奏一样快。为什么API响应时间很重要想想看:API响应时间就是你的应用程序与服务器之间的对话速度。它响应得越快,用户就会越开心。API慢=用户沮丧,API快=用户高兴。所以,让我们解决那些延迟
- BPM软件是什么?15款好用的BPM软件盘点
在当今竞争激烈的商业环境中,企业需要不断优化其业务流程以提高效率和竞争力。而业务流程管理(BusinessProcessManagement,BPM)软件正是帮助企业实现这一目标的关键工具之一。本文将详细介绍BPM软件的概念、功能以及其在现代企业中的应用,并为大家盘点15款市场上广受好评的BPM软件。一、什么是BPM软件?BPM软件是一种用于设计、执行、监控和优化企业业务流程的软件工具。它通过图形
- ios企业证书下载方法
html5
使用ios企业证书打包的IOS应用,可以不需要上架appstore即可安装在用户的苹果手机,可以放到一些测试分发平台进行扫码安装,比如香蕉云编或蒲公英等等。那么ios企业证书在什么地方可以下载呢?或者是怎么生成呢?企业证书一般需要使用自己的企业证书,因为假如用别人的企业证书,假如别人的企业证书过期了,或者注销了,所有安装了这个APP的手机将打不开这个APP,而且无法提示它升级。或者假如对方的证书用
- 设计模式--增强工厂、安全工厂
ଲ218
设计模式javascript前端
增强工厂//通过类来创建对象functionPeople(name,age,sex){this.name=name;this.age=age;this.sex=sex;}//方法People.prototype.intro=function(){console.log('我是'+this.name+'性别是'+this.sex+'今年'+this.age);}//创建实例varp1=newPeop
- Zset应用之滑动窗口限流
八股文领域大手子
java数据库服务器算法开发语言
滑动窗口限流的实现原理滑动窗口限流的核心是:统计某个时间窗口内的请求数,若超过阈值则拒绝新请求。用RedisZSet实现的关键步骤:1.数据结构设计ZSetKey:rate_limit:api1(示例)member:请求唯一标识(如UUID或IP+时间戳)score:请求的时间戳(单位需一致,如秒或毫秒)2.限流逻辑(分步骤)假设限制60秒内最多100次请求:步骤1:删除时间窗口外的旧请求#删除6
- Spring boot快速接入Swagger
lucky_iboy
后端javaswagger2springboot后端gson
swagger可以帮助我们快速生成api文档。1.引入swagger依赖 io.springfox springfox-swagger2 2.6.0 io.springfox springfox-swagger-ui 2.6.02.配置项目2.1增加@EnableSwagger2到启动类2.2配置swaggerdocket@Configurationpublic class Swagg
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- 机身越「有型」,生态越开「阔」!华为Pura X带来全新应用市场
harmonyos
3月20日,华为Pura先锋盛典及鸿蒙智行新品发布会如期举行,正式推出首款搭载HarmonyOS5的新形态阔折叠手机PuraX,硬件设计实现突破性创新。生态上,鸿蒙应用市场(AppGallery)也完成全新升级,整合了生活、娱乐、办公、金融等多元场景,精准满足用户需求,实现应用高效获取与流畅操作体验。鸿蒙应用市场(AppGallery)打出“找应用,上AppGallery”的口号,通过本次升级,打
- 自动语音识别(ASR):技术、应用与未来
ajie1117
语音识别人工智能
自动语音识别(ASR):技术、应用与未来1.ASR简介自动语音识别(ASR,AutomaticSpeechRecognition)是一种将语音转换为文本的技术。它利用人工智能(AI)、深度学习和自然语言处理(NLP)技术来识别和理解人类的语言,使计算机能够与人类进行更自然的交互。2.ASR的工作原理ASR的核心流程通常包括以下几个步骤:语音信号采集:通过麦克风或其他设备获取音频数据。预处理:去除噪
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 【Lua】实现面向对象
xiaoaiyu___
Lualua开发语言
面向对象面向对象的三大特性:封装、继承、多态。封装:就是把对象的属性和行为(数据)结合为一个独立的整体,并尽可能隐藏对象的内部实现细节。继承:从已有的类中派生出新的类称为子类,子类继承父类的数据属性和行为,并能根据自己的需求扩展出新的行为,可以提高代码的复用性。多态:指允许不同的对象对同一消息做出响应。即同一消息可以根据发送对象的不同而采用多种不同的行为方式(发送消息就是函数调用)。1.封装。在L
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc