经典问题莫比乌斯反演gcd(a,b)==kGuGuFishtion好题

http://acm.hdu.edu.cn/showproblem.php?pid=6390

1.任意一个数都可以分解成质因子的乘积

2.考虑质因子p

a:p^a1;

b:p^b1;

phi(a)=(p-1)*p^(a-1)

phi(b)=(p-1)*p(b1-1);

phi(a,b)=(p-1)*p(a1+b1-1);

phi(ab)/(phi(a)*phi(b))=p/p-1=p/phi(p);

3.所以就是求gcd(a,b)/phi(gcd(a,b));

f(d)表示d|gcd(a,b),1<=a<=n,1<=b<=m,的对数

g(d)表示d=gcd(a,b),1<=a<=n,1<=b<=m,的对数

则f(d)=n/d*m/d;

求g(d)时f(d)减去d!=gcd(a,b)的对数这个方法上次比赛也用到了

#include 
using namespace std;
#define rep(i,a,n) for (int i=a;i=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector VI;
typedef long long ll;
typedef pair PII;
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
// head
 
const ll N=1000000;
int pr[N/5],p[N+100],tot,phi[N+100];
ll f[N+10],inv[N+10];
int n,m,mod,_;
 
void init() {
	phi[1]=1;p[1]=1;
	rep(i,2,N+1) {
		if (!p[i]) p[i]=i,pr[++tot]=i,phi[i]=p[i]-1;
		for (int j=1;j<=tot&&pr[j]*i<=N;j++) {
			p[i*pr[j]]=pr[j];
			if (p[i]==pr[j]) {
				phi[i*pr[j]]=phi[i]*pr[j];
				break;
			} else phi[i*pr[j]]=phi[i]*(pr[j]-1);
		}
	}
}
 
int main() {
	init();
	for (scanf("%d",&_);_;_--) {
		scanf("%d%d%d",&n,&m,&mod);
		if (n>m) swap(n,m);
		inv[1]=1;
		for (int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
		ll ans=0;
		for (int i=n;i>=1;i--) {
			f[i]=(ll)(n/i)*(m/i);
			for (int j=i+i;j<=n;j+=i) f[i]=f[i]-f[j];
			ans=(ans+f[i]%mod*i%mod*inv[phi[i]])%mod;
		}
		printf("%lld\n",ans);
	}
}
 

 

 

你可能感兴趣的:(比赛,组合数学-莫比乌斯反演)