- 【NLP】gensim lda使用方法
zkq_1986
NLP
OptimizedLatentDirichletAllocation(LDA)inPython.ForafasterimplementationofLDA(parallelizedformulticoremachines),seealsogensim.models.ldamulticore.ThismoduleallowsbothLDAmodelestimationfromatrainingcor
- Python自然语言处理库之gensim使用详解
Rocky006
python开发语言
概要Gensim是一个专门用于无监督主题建模和自然语言处理的Python开源库,由捷克共和国的RadimŘehůřek开发。该库专注于处理大规模文本数据,提供了多种经典的主题建模算法,如LDA(潜在狄利克雷分配)、LSI(潜在语义索引)等,以及现代化的词向量模型Word2Vec、Doc2Vec、FastText等。Gensim的设计理念是"为人类而非机器",强调易用性和可扩展性,特别适合处理无标签
- python第三方库
SherlyYang_
Pythonpython
深度学习框架:Tensorflow、Theano包装深度学习框架的库:Keras(tf和Theano)、tflearn(tf)机器学习库:sklearn、Gensim
- gensim简单使用
Yae Yang
pythonnlp
首先是安装,看了网上各种教程,需要先按顺序安装numpy、scipy以及smartopen,最后才是gensim,另外有博主说numpy需要mkl版本。不过我自己电脑上已经有各种所需要的库了,直接pipinstallgensim就行了。中途碰到过问题:①模型训练参数没有“size”的属性,目前是采取去掉这一参数②gensim导入出现scipy报错:cannotimportname'_ccallba
- NLP-gensim库
安替-AnTi
NLP
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。LSILDAHDPDTMDIMTF-IDFword2vec、paragraph2vec基本概念语料(Corpus):一组原始文
- gensim使用
swai1688
Python开发自然语言处理人工智能nlp
参考教程核心概念Document(文档)Corpus(语料库)Vector(向量)Model(模型)Dictionary,doc2bow#处理流程:语料转成2维,->Dictionary变成字典->doc2bow变成向量->models进入模型#corpora:语料相关的知识#models:模型相关的fromgensimimportcorporafromgensimimportmodels#输入的
- Python库: gensim
司南锤
python基础学习PYTHON库python开发语言
Gensim是一个用于主题建模、文档索引和大型语料库相似性检索的Python库。主要用于处理自然语言处理(NLP)和信息检索(IR)任务。Gensim的设计目标是处理原始的、非结构化的文本数据,并且能够高效地处理大规模数据集。以下是Gensim库的一些主要功能和组件:1.主题建模Gensim提供了多种主题建模算法,其中最著名的是LatentDirichletAllocation(LDA)。LDA是
- gensim基础用法
雪儿waii
sklearn
fromgensim.modelsimportword2vecimportloggingfromgensimimportcorpora,models,similarities#logging.basicConfig(format="%(asctime)s:%(levelname)s:%(message)s",level=logging.INFO)#raw_sentences=["thequickb
- GENSIM 使用笔记1 --- 语料和向量空间
学术状态抽奖器
NLP技术手札学习手册gensim中文向量序列化教程
GENSIM使用笔记1—语料和向量空间GENSIM使用笔记2—主题模型和相似性查询1本篇说明本篇博客来源于GENSIM官方向导文档的第一章,主要供自己后续的翻阅,并通过分享带给诸位网友一个小小的参照。从字符串到向量在这一小节当中,将会讲述如何通过gensim,将一段文本以向量的形式表示。首先我们看一下我们的基本文档形式:documents=['拍照反光一直是摄影爱好者较为苦恼的问题','尤其是手机
- Python自然语言处理:gensim库的探索与应用
丶本心灬
本文还有配套的精品资源,点击获取简介:本文档介绍了gensim库——一个专为Python设计的开源自然语言处理工具,它支持词向量模型、主题模型、相似度计算、TF-IDF和LSA等核心功能。该库适用于文档相似性和主题建模任务,特别强调其在处理大规模语料库中的高效性和准确性。包含gensim-4.0.0版本的预编译安装包,为64位Windows系统上的Python3.6版本提供便捷安装体验。文档还提供
- 用 Gensim 实现 Word2Vec 古诗生成
万能小贤哥
word2vec人工智能自然语言处理
向量操作。我们将借助它完成从语料处理到古诗生成的全流程。6.1环境搭建与库导入首先安装Gensim及依赖库:bashpipinstallgensimnumpypandas导入必要模块:python运行fromgensim.modelsimportWord2Vec#核心词向量模型fromrandomimportchoice#随机选择字符fromos.pathimportexists#检查文件存在fr
- ImportError: cannot import name ‘PROTOCOL_TLS‘ from ‘urllib3.util.ssl_‘
一个老丁头
python
解决办法:重装gensim不行的话,根据报错信息检查下所用的包是否在同一个路径下,我是pytorch_pretrained_bert这个包报的错,原来装在了C盘,现在的gensim装在了D盘,我把之前C盘的卸载了,然后装在了D盘就没事了。
- Datawhale AI春训营--蛋白质预测(AI+生命科学)
2 0 1 2
人工智能机器学习
基础解题方案方法1:词向量+机器学习步骤1:训练词向量使用gensim库的Word2Vec模型对氨基酸序列进行词向量训练。将每个蛋白质序列转换为由空格分隔的字符串(’'.join(x[“sequence”])),形成句子列表。vector_size=100:词向量的维度为100。min_count=1:至少出现一次的单词才会被考虑。训练完成后,model_w2v包含了每个氨基酸的词向量表示。dat
- TensorFlow深度学习实战(12)——词嵌入技术详解
盼小辉丶
深度学习tensorflow自然语言处理
TensorFlow深度学习实战(12)——词嵌入技术详解0.前言1.词嵌入基础2.分布式表示3.静态嵌入3.1Word2Vec3.2GloVe4.使用Gensim构建词嵌入5.使用Gensim探索嵌入空间6.动态嵌入小结系列链接0.前言在本节中,我们首先介绍词嵌入的概念,然后介绍两种实现词嵌入的方式:Word2Vec和GloVe,学习如何使用Gensim库从零开始构建语料库的词嵌入,并探索所创建
- 关于pip install 包 时出现This is an issue with the package mentioned above,not pip的问题
沙度灬
pip
关于Thisisanissuewiththepackagementionedabove,notpip今天在用pip下载gensim包的时候,出现了上图中的问题,提示信息是:Thisisanissuewiththepackagementionedabove,notpip那说明是包的问题,而不是在使用pip去安装这个包或者pip本身有故障的问题。当前我的python版本是python3.13,说明ge
- 利用gensim生成词袋模型(基于频次和基于TF-IDF)
weixin_50291342
文本表示自然语言处理python机器学习
前言参考文献:胡盼盼编著.自然语言处理从入门到实战[M].中国铁道出版社,2020.最近在学习文本表示的一种最简单方式——词袋模型,书中给出了使用gensim生成词袋模型的代码,原代码就来自于这本书,我加了一些注释,方便理解代码。一、引入库fromgensim.modelsimportTfidfModelfromgensim.corporaimportDictionaryimportjieba二、
- ChatTTS,一款基于Python的自然语言处理项目
m0_75259337
活动文章活动文章
####文章标题:热门GitCode项目推荐:从技术角度分析ChatTTS 在GitCode平台上,有许多优秀的开源项目供我们学习和使用。今天,我将为大家推荐一个非常热门且具有很高技术含量的项目——ChatTTS。 **项目介绍**:ChatTTS是一个基于Python的自然语言处理项目,它能够将文本转换为语音。该项目使用TensorFlow和Gensim库进行语音合成和文本分析,使得生成
- linux离线安装gensim,安装gensim
宇宙探索未解之迷
linux离线安装gensim
pip3installjieba-0.39.zippip3installdocutils-0.15.2-py3-none-any.whlpip3installpython_dateutil-2.8.0-py2.py3-none-any.whlRequirementalreadysatisfied:six>=1.5pip3installbotocore-1.12.238-py2.py3-none-a
- 一行代码搞定加载glove预训练词向量
peanutwang
python机器学习人工智能
加载glove预训练词向量再也不用glove2word2vec转换啦!以前加载glove预训练词向量的方法fromgensim.scripts.glove2word2vecimportglove2word2vecglove2word2vec('glove.6B.50d.txt','word2vec50d.txt')其实就是在原来的txt文件前面加上了一行信息,行和列。word10.1230.134
- 今日无更新
我的昵称违规了
学校的一个会忙得昏天黑地。明天有自己的一个发表,还要准备PPT,根据原来的改改就好……这周真的是有点繁杂了,搞定之后连着四五月份要写两篇论文,再加上五月底的课程论文还有紧接着的文献综述,看样子要疯……现在梳理一下自己手里的锤子:转到Pytorch,使用AllenNLP了解Transformer、了解LSTM了解jieba等分词工具了解Gensim等NLP处理工具接下来要做的:基于AllenNLP搞
- Python中的自然语言处理和文本挖掘
api77
电商apiapipython自然语言处理easyui开发语言网络前端java
在Python中,自然语言处理(NLP)和文本挖掘通常涉及对文本数据进行清洗、转换、分析和提取有用信息的过程。Python有许多库和工具可以帮助我们完成这些任务,其中最常用的包括nltk(自然语言处理工具包)、spaCy、gensim、textblob和scikit-learn等。以下是一个简单的例子,展示了如何使用Python和nltk库进行基本的自然语言处理和文本挖掘。安装必要的库首先,确保你
- gensim 实现 TF-IDF
木下瞳
NLP大模型tf-idf人工智能
目录介绍代码介绍TF-IDF(TermFrequency-InverseDocumentFrequency)含义:TF(TermFrequency):词频,是指一个词语在当前文档中出现的次数。它衡量的是词语在文档内部的重要性,直观上讲,一个词语在文档中出现越频繁,表明它对该文档内容描述的贡献越大。IDF(InverseDocumentFrequency):逆文档频率,是一个词语在整个文档集合中的稀
- gensim 语言训练库 2018-10-26
Mr_Du_Biao
一、安装gensimpipinstallgensim二、使用这个训练库很厉害,里面封装很多机器学习的算法,是目前人工智能的主流应用库importjiebaimportgensimfromgensimimportcorporafromgensimimportmodelsfromgensimimportsimilaritiesl1=["你的名字是什么","你今年几岁了","你有多高你胸多大","你胸多
- gensim模型(1)——Word2Vec
qqqh777
Word2Vec模型介绍Gensim的Word2Vec模型且展示其在LeeEvaluationCorpus上的用法。importlogginglogging.basicConfig(format='%(asctims)s:%(levelname)s:%(message)s',level=logging.INFO)如果你错过了提示,Word2Vec是基于神经网络的广泛使用的算法,通常被称为"深度学习
- Gensim详细介绍和使用:一个Python文本建模库
Bigcrab__
Python库介绍和使用python
Gensim=“GenerateSimilar”一、安装二、文本预处理2.1中文语料处理2.2英文语料处理2.3BOW语料建立三、模型使用3.1word2vecThealgorithmsinGensim,suchasWord2Vec,FastText,LatentSemanticIndexing(LSI,LSA,LsiModel),LatentDirichletAllocation(LDA,Lda
- Python与自然语言处理库Gensim实战
心梓知识
python自然语言处理easyui
一、Gensim简介Gensim是一款Python自然语言处理库。它能够自动化训练出一个文本语料库,然后用该语料库来训练出一个词向量模型。在语料库中,每个语料库都是由一个个文档组成,每个文档则是由若干个单词组成。Gensim相对于其他Python自然语言处理库的优点在于它的速度和内存占用率较低。同时它还提供了许多文本处理的功能,比如文档相似度计算和主题建模等。二、安装Gensim在安装Gensim
- 【爬虫实战】python文本分析库——Gensim
认真写程序的强哥
爬虫pythonPython爬虫Python学习Python文本分析Gensim开发语言
文章目录01、引言02、主题分析以及文本相似性分析03、关键词提取04、Word2Vec嵌入(词嵌入WordEmbeddings)05、FastText嵌入(子词嵌入SubwordEmbeddings)06、文档向量化01、引言Gensim是一个用于自然语言处理和文本分析的Python库,提供了许多强大的功能,包括文档的相似度计算、关键词提取和文档的主题分析,要开始使用Gensim,您需要安装它,
- 调用Gensim库训练Word2Vec模型
风筝超冷
word2vecpython深度学习
一、前期工作:1.安装Gensim库pipinstallgensim2.安装chardet库pipinstallchardet3.对原始语料分词选择《人民的名义》的小说原文作为语料,先采用jieba进行分词importjiebaimportjieba.analyseimportchardetjieba.suggest_freq('沙瑞金',True)#加入一些词,使得jieba分词准确率更高jie
- Word2Vec ——gensim实战教程
王同学死磕技术
最近斯坦福的CS224N开课了,看了下课程介绍,去年google发表的Transformer以及最近特别火的ContextualWordEmbeddings都会在今年的课程中进行介绍。NLP领域确实是一个知识迭代特别快速的领域,每年都有新的知识冒出来。所以身处NLP领域的同学们要时刻保持住学习的状态啊。笔者又重新在B站上看了这门课程的第一二节课。这里是课程链接。前两节课的主要内容基本上围绕着词向量
- x86系统与arm64系统不兼容的linux服务器问题
stay_foolish12
python操作系统大数据
一键离线安装命令:pipinstall--no-index--find-links=/home/digital_package-rrequirements.txt--ignore-installed1cython2gensim:
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/