- Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建
遇安.YuAn
Spark大数据平台组件搭建hadoop大数据Sparkscala环境搭建
搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联,都是从零开始搭建。如果将文章中的配置文件修改内容复制粘贴的话,所有配置文件添加的内容后面的注释记得删除,可能会报错。保险一点删除最好。Scala环境搭建上传安装包解压并重命名rz上传如果没有安装rz可以使用命令安装:yuminstall-ylrzsz这里我将scala解压到/opt/module目录下:tar-zxvf/op
- (一)spark是什么?
一智哇
大数据框架学习sparkbigdata大数据
1.spark是什么?spark是一个用来实现快速,通用的集群计算平台spark适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理。通过在一个统一的框架下支持这些不同的计算,spark使我们可以简单而低耗地把各种处理流程整合在一起。2.spark的用途(1):数据科学任务具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的python,matlab
- spark hdfs 常用命令
毛球饲养员
sparksparkhdfs
目录lsrmgettext以下按照使用频率和使用先后顺序排序(纯个人习惯)ls列出hdfs文件系统路径下的目录和文件hdfsdfs-ls列出hdfs文件系统路径下所有的目录和文件hdfsdfs-ls-Rrmhadoopfs-rm...hadoopfs-rm-r...每次可以删除多个文件或目录getlocalfile不能和hdfsfile名字不能相同,否则会提示文件已存在,没有重名的文件会复制到本地
- 常用spark命令
会拉小提琴的左脚
大数据sparkhadoophdfs
--spark启动localhost$spark-sql--masteryarn启动主节点yarn模式--查看hdfs文件hdfsdfs-ls/spark/myDatabase.db查看我们建的表其实是是建立在hdfs里面hdfsdfs-du-h/spark/myDatabase.db查看我们的文件大小也就是我们的表的大小要接近最小的block大小如64M或者128M-h是以我们合适的单位去展示大
- Spark详解二
卢子墨
Spark原理实战总结spark
八、Spark部署模式1、Local本地模式:运行于本地spark-shell--masterlocal[2](local[2]是说,执行Application需要用到CPU的2个核)2、Standalone独立模式:Spark自带的一种集群模式Spark自己管理集群资源,此时只需要将Hadoop的HDFS启动Master节点有master,Slave节点上有worker启动./bin/spark
- Spark基本命令
chenworeng5605
大数据scalashell
一、spark所在目录cdusr/local/spark二、启动spark/usr/local/spark/sbin/start-all.sh启动Hadoop以及Spark:bash./starths.sh浏览器查看:172.16.31.17:8080停止Hadoop以及Sparkbash./stophs.sh三、基础使用参考链接:https://www.cnblogs.com/dasn/arti
- spark vi基本使用
忧伤火锅麻辣烫
笔记
打开文件与创建文件是Linux的内置命令,以命令的方式来运行。命令格式:vi/路径/文件名注意以下两种情况:1.如果这个文件不存在,此时就是新建文件,编辑器的左下角会提示:newfile2.如果文件已存在,此时就打开这个文件,进入命令模式。把文本内容添加到一个全新的文件的快捷方式:echo1>>1.txt三种模式vi编辑器有三种工作模式,分别为:命令模式,输入模式,底线模式。命令模式:所敲按键编辑
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- spark 常见操作命令
小冻梨!!!
spark
配置虚拟机配置即让自己的虚拟机可以联网,和别的虚拟机通讯一、配置vm虚拟机网段。具体设置为:虚拟机左上角点击编辑→虚拟网络编辑器选择VMnet8,要改动两个地方(注意:它会需要管理员权限):1.子网IP改成192.168.10.02.NAT设置→192.168.10.2让所有的VM配置的虚拟机使用NAT时,它们的网段都是一致的。注意:这里的第三个部分的10并不是固定的,我们自己可以约定,但是
- PySpark实现获取S3上Parquet文件的数据结构,并自动在Snowflake里建表和生成对应的建表和导入数据的SQL
weixin_30777913
pythonawssqlspark
PySpark实现S3上解析存储Parquet文件的多个路径,获取其中的数据Schema,再根据这些Schema,参考以下文本,得到创建S3路径Stage的SQL语句和上传数据到Snowflake数据库的SQL语句,同样的Stage路径只需创建一个Stage对象即可,并在S3上保存为SQL,并在Snowflake里创建对应的表,并在S3上存储创建表的SQL语句。要将存储在S3上的Parquet文件
- 37.索引生命周期管理—kibana 索引配置
大勇任卷舒
ELKelasticsearch大数据bigdata
37.1背景引入索引生命周期管理的一个最重要的目的就是对大量时序数据在es读写操作的性能优化如通过sparkstreaming读取Kafka中的日志实时写入es,这些日志高峰期每天10亿+,每分钟接近100w,希望es能够对单分片超过50g或者30天前的索引进行归档,并能够自动删除90天前的索引这个场景可以通过ILM进行策略配置来实现37.2介绍ES索引生命周期管理分为4个阶段:hot、warm、
- 通过spark-redshift工具包读取redshift上的表
stark_summer
sparksparkredshiftparquetapi数据
spark数据源API在spark1.2以后,开始提供插件诗的机制,并与各种结构化数据源整合。spark用户可以读取各种各样数据源的数据,比如Hive表、JSON文件、列式的Parquet表、以及其他表。通过spark包可以获取第三方数据源。而这篇文章主要讨论spark新的数据源,通过spark-redshift包,去访问AmazonRedshift服务。spark-redshift包主要由Dat
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- Spark复习八:简述Spark运行流程以及Spark分区以及简述SparkContext
IT change the world
sparkspark大数据面试hadoopzookeeper
1.简述Spark运行流程:1.构建SparkApplication的运行环境,启动SparkContext2.SparkContext向资源管理器(可以是Standalone,Mesos,Yarm)申请运行Executor资源,并启动StandaloneExecutorbackend3.Executor向SparkContext申请Task4.SparkContext将应用程序分发给Execut
- Spark使用Parqute存储方式有什么好处
冰火同学
Sparkspark
列式存储:压缩效率和查询效率谓词下推存储层:查询数据块生态兼容性高:Spark,hadoop等都兼容
- 初学者如何用 Python 写第一个爬虫?
ADFVBM
面试学习路线阿里巴巴python爬虫开发语言
??欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。??博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark
- Spark架构都有那些组件
冰火同学
Sparkspark架构大数据
Spark组件架构主要采用主从结构,分别是driver驱动器,Excutor执行器,和clusterManager集群管理器这个三个架构组件其中driver驱动器主要负责spark执行Excutor的任务分配。Excutor执行器猪獒就是负责将被分配到的task任务进行处理clastermanager管理有多钟:第一种的spark自带的的集群管理,叫做standalone。第二种是sparkony
- hive-staging文件问题——DataX同步数据重复
Aldebaran α
Hivesqlhive大数据hdfsspark
1.产生原因1.使用Hue的界面工具执行Hive-sql。Hue会自动保存sql执行结果方便用户能够查看历史执行记录,所以会在相应目录下生成hive-staging文件;2.Hive-sql任务执行过程中出现异常,导致hive-staging文件未删除,未出现异常时,hive会自行删除hive-staging文件;3.使用spark-sqlonyarn跑sql程序生成的hive-staging文件
- 避免Hive和Spark生成HDFS小文件
穷目楼
数据库大数据大数据sparkhivehadoop
HDFS是为大数据设计的分布式文件系统,对大数据做了存储做了针对性的优化,但却不适合存储海量小文件。Hive和spark-sql是两个在常用的大数据计算分析引擎,用户直接以SQL进行大数据操作,底层的数据存储则多由HDFS提供。对小数据表的操作如果没做合适的处理则很容易导致大量的小文件在HDFS上生成,常见的一个情景是数据处理流程只有map过程,而流入map的原始数据数量较多,导致整个数据处理结束
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 强者联盟——Python语言结合Spark框架
博文视点
全栈工程师全栈全栈数据SparkPythonPySpark
引言:Spark由AMPLab实验室开发,其本质是基于内存的快速迭代框架,“迭代”是机器学习最大的特点,因此非常适合做机器学习。得益于在数据科学中强大的表现,Python语言的粉丝遍布天下,如今又遇上强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark可以翻译为火花),因此本文主要讲述了PySpark。本文选自《全栈数据之门》。全栈框架Spark由AMP
- Spark技术系列(三):Spark算子全解析——从基础使用到高阶优化
数据大包哥
#Sparkspark大数据分布式
Spark技术系列(三):Spark算子全解析——从基础使用到高阶优化1.算子核心概念与分类体系1.1算子本质解析延迟执行机制:转换算子构建DAG,行动算子触发Job执行任务并行度:由RDD分区数决定(可通过spark.default.parallelism全局配置)执行位置优化:基于数据本地性的任务调度策略1.2官方分类标准
- 大数据经典技术解析:Hadoop+Spark大数据分析原理与实践
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介大数据时代已经来临。随着互联网、移动互联网、物联网等新兴技术的出现,海量数据开始涌现。而在这些海量数据的基础上进行有效的处理,成为迫切需要解决的问题之一。ApacheHadoop和ApacheSpark是目前主流开源大数据框架。由于其易于部署、高容错性、并行计算能力强、适应数据量大、可编程、社区支持广泛等特点,大大提升了大数据应用的效率和效果。本文通过对Hado
- Spark核心之06:知识点梳理
小技工丨
大数据技术学习SparkSQLspark大数据
spark知识点梳理spark_〇一1、spark是什么spark是针对于大规模数据处理的统一分析引擎,它是基于内存计算框架,计算速度非常之快,但是它仅仅只是涉及到计算,并没有涉及到数据的存储,后期需要使用spark对接外部的数据源,比如hdfs。2、spark四大特性1、速度快spark比mapreduce快的2个主要原因1、基于内存(1)mapreduce任务后期再计算的时候,每一个job的输
- Airflow和PySPARK实现带多组参数和标签的Amazon Redshift数据仓库批量数据导出程序
weixin_30777913
pythonspark云计算
设计一个基于多个带标签SQL模板作为配置文件和多组参数的PySPARK代码程序,实现根据不同的输入参数,用Airflow进行调度,自动批量地将AmazonRedshift数据仓库的数据导出为Parquet、CSV和Excel文件到S3上,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。PySpark程序需要异常处理,输出带时间戳和每个运行批次和每个导出文件作业运行状
- 入门Apache Spark:基础知识和架构解析
juer_0001
javaspark
介绍ApacheSparkSpark的历史和背景ApacheSpark是一种快速、通用、可扩展的大数据处理引擎,最初由加州大学伯克利分校的AMPLab开发,于2010年首次推出。它最初设计用于支持分布式计算框架MapReduce的交互式查询,但逐渐发展成为一种更通用的数据处理引擎,能够处理数据流、批处理和机器学习等工作负载。Spark的特点和优势Spark是一种快速、通用、可扩展的大数据处理框架,
- Spark核心算子对比:`reduceByKey`与`groupByKey`源码级解析及生产调优指南
数据大包哥
大数据spark分布式
Spark核心算子对比:reduceByKey与groupByKey源码级解析及生产调优指南1.核心机制对比在Spark中,reduceByKey和groupByKey都是对键值对RDD(RDD[(K,V)])进行聚合操作的高阶算子,但两者的底层实现和性能表现截然不同。特性reduceByKeygroupByKeyShuffle前预聚合✅启用(mapSideCombine=true)❌禁用(map
- spark为什么比mapreduce快?
京东云开发者
sparkmapreduce大数据
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比ma
- Spark 运行问题 java.lang.NoSuchMethodError 解决方案
@飞往你的山
sparkscala
一般情况,出现这种问题是因为scala和spark的版本不匹配,需要重新下载两者相匹配的版本。File-ProjectStructure-Libraies-“+”-java选择spark目录下jars文件夹Maven项目,pom.xml文件中添加Spark依赖,需要联网下载,或者本地库中已经下载好依赖包2.3.3org.apache.sparkspark-core_2.11${spark.vers
- 如何使用Spark Streaming将数据写入HBase
Java资深爱好者
sparkhbase大数据
在SparkStreaming中将数据写入HBase涉及到几个步骤。以下是一个基本的指南,帮助你理解如何使用SparkStreaming将数据写入HBase。1.环境准备HBase:确保HBase集群已经安装并运行。Spark:确保Spark已经安装,并且Spark版本与HBase的Hadoop版本兼容。HBaseConnectorforSpark:你需要使用HBase的SparkConnecto
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文