hdfs怎么处理小文件问题

一、HAR文件方案

        为了缓解大量小文件带给namenode内存的压力,Hadoop 0.18.0引入了Hadoop Archives(HAR files),其本质就是在HDFS之上构建一个分层文件系统。通过执行hadoop archive 命令就可以创建一个HAR文件。在命令行下,用户可使用一个以har://开头的URL就可以访问HAR文件中的小文件。使用HAR files可以减少HDFS中的文件数量。

        下图为HAR文件的文件结构,可以看出来访问一个指定的小文件需要访问两层索引文件才能获取小文件在HAR文件中的存储位置,因此,访问一个HAR文件的效率可能会比直接访问HDFS文件要低。对于一个mapreduce任务来说,如果使用HAR文件作为其输入,仍旧是其中每个小文件对应一个map task,效率低下。所以,HAR files最好是用于文件归档。

二、Sequence Files方案

        除了HAR files,另一种可选是SequenceFile,其核心是以文件名为key,文件内容为value组织小文件。10000个100KBde 小文件,可以编写程序将这些文件放到一个SequenceFile文件,然后就以数据流的方式处理这些文件,也可以使用MapReduce进行处理。一个SequenceFile是可分割的,所以MapReduce可将文件切分成块,每一块独立操作。不像HAR,SequenceFile支持压缩。在大多数情况下,以block为单位进行压缩是最好的选择,因为一个block包含多条记录,压缩作用在block智商,比reduce压缩方式(一条一条记录进行压缩)的压缩比高。

        把已有的数据转存为SequenceFile比较慢。比起先写小文件,再将小文件写入SequenceFile,一个更好的选择是直接将数据写入一个SequenceFile文件,省去小文件作为中间媒介。

        下图为SequenceFile的文件结构。HAR files可以列出所有keys,但是SequenceFile是做不到的,因此,在访问时,只能从文件头顺序访问        

 

你可能感兴趣的:(Hadoop,hadoop,小文件)