2020-09-07

# Copyright 2018 The AI boy xsr-ai. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""MobileNet v2.
MobileNet is a general architecture and can be used for multiple use cases.
Depending on the use case, it can use different input layer size and different
head (for example: embeddings, localization and classification).
As described in https://arxiv.org/abs/1801.04381.
  Inverted Residuals and Linear Bottlenecks: Mobile Networks
    for Classification, Detection and Segmentation
  Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
"""

# Tensorflow mandates these.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import namedtuple
import functools

import tensorflow as tf

slim = tf.contrib.slim

# Conv and InvResBlock namedtuple define layers of the MobileNet architecture
# Conv defines 3x3 convolution layers
# InvResBlock defines 3x3 depthwise convolution followed by 1x1 convolution.
# stride is the stride of the convolution
# depth is the number of channels or filters in a layer
Conv = namedtuple('Conv', ['kernel', 'stride', 'depth'])
InvResBlock = namedtuple('InvResBlock', ['kernel', 'stride', 'depth', 'repeate'])

# _CONV_DEFS specifies the MobileNet body
_CONV_DEFS = [
    Conv(kernel=[3, 3], stride=2, depth=32),
    InvResBlock(kernel=[3, 3], stride=1, depth=16, repeate=1),
    InvResBlock(kernel=[3, 3], stride=2, depth=24, repeate=2),
    InvResBlock(kernel=[3, 3], stride=2, depth=32, repeate=3),
    InvResBlock(kernel=[3, 3], stride=1, depth=64, repeate=4),
    InvResBlock(kernel=[3, 3], stride=2, depth=96, repeate=3),
    InvResBlock(kernel=[3, 3], stride=2, depth=160, repeate=3),
    InvResBlock(kernel=[3, 3], stride=1, depth=320, repeate=1),
    Conv(kernel=[1, 1], stride=1, depth=1280)
]

expand_ratio = 6

def inverted_block(net, input_filters, output_filters, expand_ratio, stride, scope=None):
    '''fundamental network struture of inverted residual block'''
    with tf.name_scope(scope):
        res_block = slim.conv2d(inputs=net, num_outputs=input_filters * expand_ratio, kernel_size=[1, 1])
        # depthwise conv2d
        res_block = slim.separable_conv2d(inputs=res_block, num_outputs=None, kernel_size=[3, 3], stride=stride, depth_multiplier=1.0, normalizer_fn=slim.batch_norm)
        res_block = slim.conv2d(inputs=res_block, num_outputs=output_filters, kernel_size=[1, 1], activation_fn=None)
        # stride 2 blocks
        if stride == 2:
            return res_block
        # stride 1 block
        else:
            if input_filters != output_filters:
                net = slim.conv2d(inputs=net, num_outputs=output_filters, kernel_size=[1, 1], activation_fn=None)
            return tf.add(res_block, net)

def mobilenet_v2_base(inputs,
                      final_endpoint='Conv2d_8',
                      min_depth=8,
                      conv_defs=None,
                      scope=None):
  """Mobilenet v2.
  Constructs a Mobilenet v2 network from inputs to the given final endpoint.
  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_0', 'Conv2d_1_InvResBlock', 'Conv2d_2_InvResBlock',
      'Conv2d_3_InvResBlock', 'Conv2d_4_InvResBlock', 'Conv2d_5_InvResBlock,
      'Conv2d_6_InvResBlock', 'Conv2d_7_InvResBlock', 'Conv2d_8'].
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced output depth to min_depth.
    conv_defs: A list of ConvDef namedtuples specifying the net architecture.
    scope: Optional variable_scope.
  Returns:
    tensor_out: output tensor corresponding to the final_endpoint.
    end_points: a set of activations for external use, for example summaries or
                losses.
  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values
                is not allowed.
  """
  depth = lambda d: max(int(d), min_depth)
  end_points = {}

  if conv_defs is None:
    conv_defs = _CONV_DEFS

  with tf.variable_scope(scope, 'MobilenetV2', [inputs]):
    with slim.arg_scope([slim.conv2d, slim.separable_conv2d], padding='SAME'):

      net = inputs
      for i, conv_def in enumerate(conv_defs):
        end_point_base = 'Conv2d_%d' % i

        if isinstance(conv_def, Conv):
          end_point = end_point_base
          net = slim.conv2d(net, depth(conv_def.depth), conv_def.kernel,
                            stride=conv_def.stride,
                            normalizer_fn=slim.batch_norm,
                            scope=end_point)
          end_points[end_point] = net
          if end_point == final_endpoint:
            return net, end_points

        elif isinstance(conv_def, InvResBlock):
          end_point = end_point_base + '_InvResBlock'
          # inverted bottleneck blocks
          input_filters = net.shape[3].value
          # first layer needs to consider stride
          net = inverted_block(net, input_filters, depth(conv_def.depth), expand_ratio, conv_def.stride, end_point+'_0')
          for index in range(1, conv_def.repeate):
              suffix = '_' + str(index)
              net = inverted_block(net, input_filters, depth(conv_def.depth), expand_ratio, 1, end_point+suffix)

          end_points[end_point] = net
          if end_point == final_endpoint:
            return net, end_points

        else:
          raise ValueError('Unknown convolution type %s for layer %d'
                           % (conv_def.ltype, i))
  raise ValueError('Unknown final endpoint %s' % final_endpoint)


def mobilenet_v2(inputs,
                 num_classes=1000,
                 dropout_keep_prob=0.999,
                 is_training=True,
                 min_depth=8,
                 conv_defs=None,
                 prediction_fn=tf.contrib.layers.softmax,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='MobilenetV2',
                 global_pool=False):
  """Mobilenet v2 model for classification.
  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
    dropout_keep_prob: the percentage of activation values that are retained.
    is_training: whether is training or not.
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced output depth to min_depth..
    conv_defs: A list of ConvDef namedtuples specifying the net architecture.
    prediction_fn: a function to get predictions out of logits.
    spatial_squeeze: if True, logits is of shape is [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    global_pool: Optional boolean flag to control the avgpooling before the
      logits layer. If false or unset, pooling is done with a fixed window
      that reduces default-sized inputs to 1x1, while larger inputs lead to
      larger outputs. If true, any input size is pooled down to 1x1.
  Returns:
    net: a 2D Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped-out input to the logits layer
      if num_classes is 0 or None.
    end_points: a dictionary from components of the network to the corresponding
      activation.
  Raises:
    ValueError: Input rank is invalid.
  """
  input_shape = inputs.get_shape().as_list()
  if len(input_shape) != 4:
    raise ValueError('Invalid input tensor rank, expected 4, was: %d' %
                     len(input_shape))

  with tf.variable_scope(scope, 'MobilenetV2', [inputs], reuse=reuse) as scope:
    with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training):
      net, end_points = mobilenet_v2_base(inputs, scope=scope,
                                          min_depth=min_depth,
                                          conv_defs=conv_defs)
      with tf.variable_scope('Logits'):
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
          end_points['global_pool'] = net
        else:
          # Pooling with a fixed kernel size.
          kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7])
          net = slim.avg_pool2d(net, kernel_size, padding='VALID', scope='AvgPool_1a')
          end_points['AvgPool_1a'] = net
        if not num_classes:
          return net, end_points
        # 1 x 1 x 1024
        net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
        logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                             normalizer_fn=None, scope='Conv2d_1c_1x1')
        if spatial_squeeze:
          logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
      end_points['Logits'] = logits
      if prediction_fn:
        end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points

mobilenet_v2.default_image_size = 224


def wrapped_partial(func, *args, **kwargs):
  partial_func = functools.partial(func, *args, **kwargs)
  functools.update_wrapper(partial_func, func)
  return partial_func

def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
  """Define kernel size which is automatically reduced for small input.
  If the shape of the input images is unknown at graph construction time this
  function assumes that the input images are large enough.
  Args:
    input_tensor: input tensor of size [batch_size, height, width, channels].
    kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]
  Returns:
    a tensor with the kernel size.
  """
  shape = input_tensor.get_shape().as_list()
  if shape[1] is None or shape[2] is None:
    kernel_size_out = kernel_size
  else:
    kernel_size_out = [min(shape[1], kernel_size[0]),
                       min(shape[2], kernel_size[1])]
  return kernel_size_out


def mobilenet_v2_arg_scope(is_training=True,
                           weight_decay=0.00004,
                           stddev=0.09,
                           regularize_depthwise=False):
  """Defines the default MobilenetV2 arg scope.
  Args:
    is_training: Whether or not we're training the model.
    weight_decay: The weight decay to use for regularizing the model.
    stddev: The standard deviation of the trunctated normal weight initializer.
    regularize_depthwise: Whether or not apply regularization on depthwise.
  Returns:
    An `arg_scope` to use for the mobilenet v2 model.
  """
  batch_norm_params = {
      'is_training': is_training,
      'center': True,
      'scale': True,
      'fused': True,
      'decay': 0.995,
      'epsilon': 0.001,
      # force in-place updates of mean and variance estimates
      'updates_collections': None,
      # Moving averages ends up in the trainable variables collection
      'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
  }

  # Set weight_decay for weights in Conv and InvResBlock layers.
  weights_init = tf.truncated_normal_initializer(stddev=stddev)
  regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
  if regularize_depthwise:
    depthwise_regularizer = regularizer
  else:
    depthwise_regularizer = None
  with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
                      weights_initializer=weights_init,
                      activation_fn=tf.nn.relu6, normalizer_fn=slim.batch_norm):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
      with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer):
        with slim.arg_scope([slim.separable_conv2d],
                            weights_regularizer=depthwise_regularizer) as sc:
          return sc

def inference(images, num_classes=None, keep_probability=1.0, phase_train=False,
              weight_decay=0.00004, reuse=None):
    '''build a mobilenet_v2 graph to training or inference.
    Args:
        images: a tensor of shape [batch_size, height, width, channels].
        num_classes: number of predicted classes. If 0 or None, the logits layer
          is omitted and the input features to the logits layer (before dropout)
          are returned instead.
        keep_probability: the percentage of activation values that are retained.
        phase_train: Whether or not we're training the model.
        weight_decay: The weight decay to use for regularizing the model.
        reuse: whether or not the network and its variables should be reused. To be
          able to reuse 'scope' must be given.
    Returns:
        net: a 2D Tensor with the logits (pre-softmax activations) if num_classes
          is a non-zero integer, or the non-dropped-out input to the logits layer
          if num_classes is 0 or None.
        end_points: a dictionary from components of the network to the corresponding
          activation.
    Raises:
        ValueError: Input rank is invalid.
    '''
    arg_scope = mobilenet_v2_arg_scope(is_training=phase_train, weight_decay=weight_decay)
    with slim.arg_scope(arg_scope):
        return mobilenet_v2(images, num_classes=num_classes, dropout_keep_prob=keep_probability, is_training=phase_train, reuse=reuse)

 

你可能感兴趣的:(特征提取网络)