Opencv HOG



很好的Hog 博文 :http://www.cnblogs.com/tornadomeet/archive/2012/08/15/2640754.html
除了HOG,重点是滑动窗口和尺度变换两部分



void HOGDescriptor::detectMultiScale(
    const Mat& img, vector& foundLocations,
    double hitThreshold, Size winStride, Size padding,
    double scale0, int groupThreshold) const
	
{
    double scale = 1.;
    foundLocations.clear();
    int i, levels = 0;
    const int maxLevels = 64;

    int t, nthreads = getNumThreads();
    vector threadData(nthreads);

    for( t = 0; t < nthreads; t++ )
        threadData[t].smallerImgBuf.create(img.size(), img.type()); //为什么每个线程数据存放的img都是和图像一样大小呢?

    vector levelScale(maxLevels);		// 记录尺度缩放比例,这里只是放大窗口,或者说缩小了图像大小
    for( levels = 0; levels < maxLevels; levels++ )
    {
        levelScale[levels] = scale;
        if( cvRound(img.cols/scale) < winSize.width ||     // 等价于  img.cols < winSize.width*scale,这个条件是说,窗口大小大于了图像大小。
            cvRound(img.rows/scale) < winSize.height ||
            scale0 <= 1 )
            break;
        scale *= scale0; // scale0 := 1.05 ,输入值,按这个比例进行缩放
    }
    levels = std::max(levels, 1);
    levelScale.resize(levels); // vector容器的一种操作

    {// 用一组大括号比较好
#ifdef _OPENMP  // 通过宏来控制更好,不仅仅要打开OpenMP,还需要宏的定义
    #pragma omp parallel for num_threads(nthreads) schedule(dynamic)
#endif // _OPENMP
    for( i = 0; i < levels; i++ )// 若是多线程,可按不同尺度并行计算,否则就是一个尺度一个尺度的计算
    {
        HOGThreadData& tdata = threadData[getThreadNum()]; // 获取线程号;getNumThreads()为获取总线程数
        double scale = levelScale[i];
        Size sz(cvRound(img.cols/scale), cvRound(img.rows/scale));	// 图像新的大小
        Mat smallerImg(sz, img.type(), tdata.smallerImgBuf.data);	// 暂且理解smallerImg与tdata.smallerImgBuf.data 共享同一个地址空间
        if( sz == img.size() )
            smallerImg = Mat(sz, img.type(), img.data, img.step);	// 不用resize 
        else
            resize(img, smallerImg, sz);							// resize到指定的大小,这时就把img数据拷贝到了tdata.smallerImgBuf.data
        detect(smallerImg, tdata.locations, hitThreshold, winStride, padding);
		// 窗口大小映射到相应尺度下的窗口大小
        Size scaledWinSize = Size(cvRound(winSize.width*scale), cvRound(winSize.height*scale));
		// 记录检测到的矩形区域
        for( size_t j = 0; j < tdata.locations.size(); j++ )
            tdata.rectangles.push_back(Rect(
                cvRound(tdata.locations[j].x*scale),	// 左上角坐标恢复到源大小图像的位置
                cvRound(tdata.locations[j].y*scale),
                scaledWinSize.width, scaledWinSize.height));
    }
    }
	// 将
    for( t = 0; t < nthreads; t++ )
    {
        HOGThreadData& tdata = threadData[t];
        std::copy(tdata.rectangles.begin(), tdata.rectangles.end(),//如果要把一个序列(sequence)拷贝到一个容器(container)中去,通常用std::copy算法
            std::back_inserter(foundLocations)); // back_inserter是迭代器,将元素插入到容器尾部
    }

    groupRectangles(foundLocations, groupThreshold, 0.2);// 将重复的矩形框进行合并
}

//计算滑动窗口数量
Size HOGCache::windowsInImage(Size imageSize, Size winStride) const
{
    return Size((imageSize.width - winSize.width)/winStride.width + 1,
                (imageSize.height - winSize.height)/winStride.height + 1);
}



void HOGDescriptor::detect(const Mat& img,
    vector& hits, double hitThreshold,
    Size winStride, Size padding , const vector& locations/*默认创建一个空的vector*/) const
{
    hits.clear();
    if( svmDetector.empty() )
        return;
    
    if( winStride == Size() )
        winStride = cellSize;	// cellSize = 8*8		,padding = 32*32
    Size cacheStride(gcd(winStride.width, blockStride.width),
                     gcd(winStride.height, blockStride.height));
    size_t nwindows = locations.size();		// nwindows = 0
    padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width);	// 不理解。暂且理解为扩充后的padding大小
    padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height);
    Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2);	// 扩充后的图像大小
    
    HOGCache cache(this, img, padding, padding, nwindows == 0, cacheStride);

    if( !nwindows )
        nwindows = cache.windowsInImage(paddedImgSize, winStride).area();		//	这里得到的就是滑动窗口的数量,具体windowsInImage函数;注意nWindows是size类型

    const HOGCache::BlockData* blockData = &cache.blockData[0];

    int nblocks = cache.nblocks.area();
    int blockHistogramSize = cache.blockHistogramSize;
    size_t dsize = getDescriptorSize();

    double rho = svmDetector.size() > dsize ? svmDetector[dsize] : 0;
    vector blockHist(blockHistogramSize);

	// 按每个滑动窗口进行计算
    for( size_t i = 0; i < nwindows; i++ )
    {
        Point pt0;
        if( !locations.empty() )
        {
            pt0 = locations[i];
            if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width ||
                pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height )
                continue;
        }
        else
        {
            pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding);
            CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0);
        }
        double s = rho;
        const float* svmVec = &svmDetector[0];
        int j, k;
        for( j = 0; j < nblocks; j++, svmVec += blockHistogramSize )
        {
            const HOGCache::BlockData& bj = blockData[j];
            Point pt = pt0 + bj.imgOffset;

            const float* vec = cache.getBlock(pt, &blockHist[0]);
            for( k = 0; k <= blockHistogramSize - 4; k += 4 )
                s += vec[k]*svmVec[k] + vec[k+1]*svmVec[k+1] +
                    vec[k+2]*svmVec[k+2] + vec[k+3]*svmVec[k+3];
            for( ; k < blockHistogramSize; k++ )
                s += vec[k]*svmVec[k];
        }
        if( s >= hitThreshold )
            hits.push_back(pt0);
    }
}





你可能感兴趣的:(HOG,OpenCV)