Arrays.sort()底层源码学习(1)

通过查看Arrays.sort()源码发现,从JDK7开始,底层实现在DualPivotQuicksort类,这个类是ladimir Yaroslavskiy,Jon Bentley和Josh Bloch等人实现的Dual-Pivot Quicksort算法。该算法在许多数据集上提供了O(nlogn)的时间复杂度,比传统的one-pivot 快排实现更快。
该类提供了些阈值,如下所示:

  /**
     * The maximum number of runs in merge sort.
     * 合并排序的最大值
     */
    private static final int MAX_RUN_COUNT = 67;

    /**
     * The maximum length of run in merge sort.
     * 合并排序的最大长度
     */
    private static final int MAX_RUN_LENGTH = 33;

    /**
     * If the length of an array to be sorted is less than this
     * constant, Quicksort is used in preference to merge sort.
     * 如果待排序数组的长度小于此常数,则优先选择采用快速排序而不是归并排序
     */
    private static final int QUICKSORT_THRESHOLD = 286;

    /**
     * If the length of an array to be sorted is less than this
     * constant, insertion sort is used in preference to Quicksort.
     * 如果待排序数组的长度小于此常数,那么优先选择插入排序而不是快速排序
     */
    private static final int INSERTION_SORT_THRESHOLD = 47;

    /**
     * If the length of a byte array to be sorted is greater than this
     * constant, counting sort is used in preference to insertion sort.
     * 如果byte数组的长度大于此常数,那么优先使用计数排序而不是插入排序。
     */
    private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 29;

    /**
     * If the length of a short or char array to be sorted is greater
     * than this constant, counting sort is used in preference to Quicksort.
     * 如果待排序数组未short数组或字符数组,且长度大于此常数,那么优先使用计数排序而不是快
     * 速排序。
     */
    private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 3200;

该类中分别实现了不同数据类型数组的排序。
如sort(int[] a),sort(long[] a),sort(short[] a),sort(char[] a),sort(byte[] a),sort(float[] a),sort(double[] a)
下面以sort(int[] a)为例介绍一下(下面为sort(int[] a)的源码:

  /**
     * Sorts the specified array.
     *
     * @param a the array to be sorted
     */
    public static void sort(int[] a) {
        sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    public static void sort(int[] a, int left, int right) {
        // Use Quicksort on small arrays 小数组则采用快速排序
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         * run[i]是第i个有序数列开始的位置(升序或降序)
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        //判断数组是否接近有序
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending 升序
                //如果是升序,一直循环找到k,直到不再升序或到末尾
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending 降序
               //如果是降序,一直循环找到k值,直到不再升序或者末尾,然后倒置
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal 相等
               //如果有至少MAX_RUN_LENGTH个连续相等数据,则直接使用快速排序
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             * 如果这个数组不是高度结构化(这里表示的应该是是否高度排序)的,
             * 则直接使用快速排序而不是归并排序
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        //针对特殊情况
        //1.如果一个有序数列只有最后一个元素,那么就给最后一个元素的后面加一个哨兵
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
        //2.整个数组中只有一个有序数列,说明该数组已经有序,不需要再排序了,直接返回
            return;
        }

        /*
         * Create temporary array, which is used for merging.
         * Implementation note: variable "right" is increased by 1.
         * 创建合并时使用的临时数组 right = right+1
         */
        int[] b; byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        if (odd == 0) {//偶数
            b = a; a = new int[b.length];
            for (int i = left - 1; ++i < right; a[i] = b[i]);
        } else {//奇数
            b = new int[a.length];
        }

        // Merging  合并操作 a为原始数组,b为目标数组
        for (int last; count > 1; count = last) {
            //遍历两个数组,合并相邻的两个升序数列
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p] <= a[q]) {
                        b[i] = a[p++];
                    } else {
                        b[i] = a[q++];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i] = a[i]
                );
                run[++last] = right;
            }
            //临时数组,保证a作为原始数组,b为目标数组
            int[] t = a; a = b; b = t;
        }
    }

    /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     * 通过双轴快排实现排序
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     * leftmost 参数:指定的范围是否在数组的最左边
     */
    private static void sort(int[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        //小数组采用插入排序
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 * 经典插入排序算法(不使用哨兵),优化服务器VM,用于leftmost情况
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    int ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 * 跳过开头的升序部分
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 * 相邻部分的每个元素都起到哨兵的作用,
                 * 因此可以避免每次迭代时检查left的范围
                 * 这里采用了更加优化的算法,叫做“成对插入算法”,
                 * 这比传统的插入排序要快(在快速排序的情况下)
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    int a1 = a[k], a2 = a[left];
                    //保证a1>=a2
                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    //将a1插入到合适的位置
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;
                    //将a2插入到合适的位置
                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                int last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7 
        //低复杂度的实现
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         * 对5段靠近中间位置的数列排序,这些元素将被作为轴
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        //插入排序
        if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers 指针
        //less为中间部分首个元素的位置,great为右边部分首个元素的位置
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            int pivot1 = a[e2];
            int pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                int ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    int ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            int pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                int ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = pivot;
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             * 将会左右两部分递归排序
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }

你可能感兴趣的:(学习记录)