- 端到端自动驾驶的分布式传感器融合架构
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
自动驾驶,分布式传感器融合,深度学习,计算机视觉,雷达,lidar,惯性导航,Kalman滤波,决策控制1.背景介绍自动驾驶技术作为未来交通运输的重要发展方向,近年来取得了显著进展。然而,实现真正安全的自动驾驶仍然面临着诸多挑战,其中之一就是如何有效地融合来自不同传感器的数据,构建一个可靠的感知、决策和控制系统。传统的自动驾驶系统通常依赖于单一传感器,例如摄像头或雷达,这会导致感知信息的缺失和鲁棒
- 大模型时代的软件架构设计
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
引言当今世界,人工智能(AI)技术正以惊人的速度发展,其中大模型(LargeModels)的崛起尤为引人注目。大模型,也被称为深度学习模型,因其庞大的参数规模和强大的数据处理能力,成为推动AI技术前进的重要力量。随着大模型的广泛应用,软件架构设计面临着前所未有的挑战和机遇。大模型时代的软件架构设计,不仅需要解决传统软件架构所面对的问题,如性能、可靠性和可扩展性等,还需要应对大模型带来的新挑战,如计
- Transformer 代码剖析8 - 编码器模块Encoder (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、代码结构总览TransformerEncoder__init__初始化Encoder类forward前向传播super()父类初始化构建词嵌入层self.emb=TransformerEmbedding参数:d_model/max_len/vocab_size/drop_prob/device构建编码层堆栈self.layers=nn.ModuleList循环创建n_layers个Encode
- 深入理解PyTorch模型训练所需的数据集
mosquito_lover1
pytorch人工智能python
在PyTorch中,模型训练的核心是数据集(Dataset)。数据集是模型训练的基础,它提供了模型训练所需的所有输入数据和对应的标签。理解数据集的结构、加载方式以及如何预处理数据是成功训练模型的关键。以下是对PyTorch模型训练所需数据集的深入解析:1.数据集的基本概念数据集:数据集是模型训练的基础,通常由输入数据(如图像、文本、音频等)和对应的标签(目标值)组成。样本(Sample):数据集中
- 如何使用Anyscale平台运行、微调和扩展大语言模型(LLMs)
eahba
语言模型人工智能自然语言处理python
Anyscale是一个功能强大的平台,主要用于运行、微调和扩展大语言模型(LLMs),并且通过生产就绪的API提供成本效益的调用服务。AnyscaleEndpoints提供了多种开源模型,适合不同的应用场景。技术背景介绍在处理大规模的自然语言处理任务时,我们常常需要一个可靠且经济高效的解决方案来运行和管理LLMs。Anyscale提供了一个强大的接口,能够简化这一过程。结合LangChain,我们
- 计算机毕业设计 ——jspssm508Springboot 的旅游管理
奔强的程序
课程设计旅游
博主小档案:花花,一名来自世界500强的资深程序猿,毕业于国内知名985高校。技术专长:花花在深度学习任务中展现出卓越的能力,包括但不限于java、python等技术。近年来,花花更是将触角延伸至AI领域,对于机器学习、自然语言处理、智能推荐等前沿技术都有独到的见解和实践经验。服务内容:1、提供科研入门辅导(主要是代码方面)2、代码部署3、定制化需求解决等4、期末考试复习计算机毕业设计——jsps
- 松灵机器人地盘 安装 ros 驱动 并且 发布ros 指令进行控制
luoganttcc
机器人机器人
安装驱动$cd~/catkin_ws/src$gitclonehttps://github.com/agilexrobotics/ugv_sdk.git$gitclonehttps://github.com/agilexrobotics/scout_ros.git$cd..$catkin_make安装●使能gs_usb内核模块●设置500k波特率和使能can-to-usb适配器sudomodpro
- 利用OllamaLLM模型实现多模态文本生成
bavDHAUO
python
利用OllamaLLM模型实现多模态文本生成在这篇文章中,我们将介绍如何使用OllamaLLM模型实现多模态文本生成,包括文本和图像输入的处理。我们将详细解析核心原理,提供代码示例,并分析应用场景。希望这篇文章能帮助你更好地理解和使用OllamaLLM模型。技术背景介绍多模态模型是指能够处理和生成多种类型的数据,如文本、图像、音频等。在自然语言处理领域,结合图像和文本的多模态模型越来越受到关注。O
- C#调用企业微信机器人推送数据(文字)
请熟读并背诵文档
企业微信机器人信息推送c#企业微信机器人
--WeChatRobotMessageSender类用于封装与企业微信机器人发送Markdown消息相关的操作usingNewtonsoft.Json;usingSystem;usingSystem.Net.Http;usingSystem.Text;usingSystem.Threading.Tasks;namespace企业微信接口测试{//WeChatRobotMessageSender类
- Crawl4AI:开源的网络爬虫和抓取工
惟贤箬溪
穷玩Aigithub开源ai
crawl4ai是一个开源项目,旨在帮助用户爬取GitHub上与AI(人工智能)相关的内容。这些内容通常包括AI相关的开源项目、库、资源、论文、教程等。项目提供了一个爬虫工具,可以自动化地抓取并提取GitHub上与人工智能相关的资源。以下是对该项目的详细解读:1.项目概述crawl4ai是一个爬虫框架,专门用于从GitHub上抓取与AI相关的开源项目或仓库。这些仓库包括AI领域的机器学习、深度学习
- KaiwuDB 亮相第二十四届中国国际工业博览会
数据库
9月24-28日,以“工业聚能,新质领航”为主题的2024第二十四届中国国际工业博览会(以下简称“工博会”)在国家会展中心(上海)盛大召开,吸引来自全球28个国家和地区2600家参展商,围绕新一代信息技术与应用、智慧能源、新能源与智能网联汽车、机器人等9大专业主题进行集中展示。KaiwuDB受邀亮相大会,以“PoweredbyKaiwuDB”为核心理念打造的工业物联网、数字能源、分布式储能、车联网
- 阿里云PAI大模型RAG对话系统最佳实践
阿里云云栖号
云栖号技术分享阿里云云计算云原生ai人工智能
去年4月至9月,阿里云人工智能平台PAI团队与大数据基础工程技术团队合作,构建了基于知识库检索增强的大模型答疑对话机器人,并在阿里云官方答疑链路、研发小蜜、钉钉大数据技术服务助手等多个线上场景上线,显著提升答疑效率。相关文档:【万字长文】基于阿里云PAI搭建知识库向量检索增强的大模型对话系统上线几个月来,随着RAG技术日趋火热,我们保持对线上链路的迭代,不断加入学界业界最新的RAG优化技术(eg:
- Simulink开发项1000例实战专栏--实例140:构建一个完整的机器人视觉导航系统模型
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏计算机视觉人工智能simulink
目录基于Simulink的机器人视觉导航系统设计与仿真1.背景介绍1.1项目背景2.系统建模与仿真2.1视觉导航系统组成2.2图像采集与处理2.3路径规划2.4运动控制2.5传感器融合3.Simulink仿真模型3.1创建Simulink模型3.2添加模块3.2.1图像采集模块3.2.2图像处理模块3.2.3路径规划模块3.2.4运动控制模块3.3连接模块3.4设置仿真参数4.示例代码片段5.结束
- 2.4 自动化评测答疑机器人的表现-大模型ACP模拟题-真题
admin皮卡
阿里云大模型ACP-考试回忆人工智能前端机器学习
真题真题1:哪些是生成阶段的评估指标?哪些是召回阶段的评估指标?整体回答质量的评估:AnswerCorrectness,用于评估RAG应用生成答案的准确度。生成环节的评估:AnswerRelevancy,用于评估RAG应用生成的答案是否与问题相关。Faithfulness,用于评估RAG应用生成的答案和检索到的参考资料的事实一致性。召回阶段的评估:ContextPrecision,用于评估cont
- 【DeepSeek + Chatbox】本地局域网多用户协作全流程!从本地部署到高效交互,深度学习任务这样搞就对了~
磕盐小宋的日常
深度学习人工智能
文章目录『概要』『干货分享』『技术细节』『DeepSeek概述』『工作站配置』『所实现的功能』『具体实现流程』『短板与前瞻』『总结』『概要』最近团队在搞深度学习相关的研究,遇到了个头大的问题:设备依赖太重,每个人都要配备高性能硬件才能跑模型。于是我开始思考,有没有办法让大家共享资源,降低设备要求?经过一番调研和实践,我们终于打通了DeepSeek平台+Chatbox可视化界面的全流程局域网协作方案
- Anaconda配置tensorflow-gpu教程
rubisco214
tensorflow人工智能python
最近在入门tensorflow深度学习,配置环境吃了不少苦头,写个完整的教程首先得在自己主机上装cuda(我之前就是主机上没装cuda,只在虚拟环境里面装了,结果jupyter里面怎么调都识别不到GPU)打开Nvidia控制面板,左上角帮助-系统信息-组件NVCUDA64.DLL后面的NVIDIACUDA12.1就是你的显卡支持的CUDA版本,去CUDA官网CUDAToolkitArchive|N
- PyTorch 常见的损失函数:从基础到大模型的应用
阿正的梦工坊
LLMPyTorchpytorch人工智能python
PyTorch常见的损失函数:从基础到大模型的应用在用PyTorch训练神经网络时,损失函数(LossFunction)是不可或缺的“裁判”。它告诉模型预测结果与真实答案的差距有多大,优化器则根据这个差距调整参数。PyTorch提供了丰富而强大的损失函数接口,位于torch.nn模块中。今天我们就来聊聊几个常见的损失函数(比如nn.MSELoss和nn.CrossEntropyLoss),看看它们
- Transformer 代码剖析4 - 编码器层实现 (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、EncoderLayer-类结构定义参考:项目代码classEncoderLayer(nn.Module):def__init__(self,d_model,ffn_hidden,n_head,drop_prob):super(EncoderLayer,self).__init__()self.attention=MultiHeadAttention(d_model=d_model,n_hea
- Bedrock Claude Chat: 基于AWS Bedrock和Claude的智能聊天机器人
2401_87458778
aws机器人云计算
BedrockClaudeChat:智能聊天的新选择在人工智能和自然语言处理技术飞速发展的今天,智能聊天机器人正在各行各业得到广泛应用。AWS推出的BedrockClaudeChat项目为开发者提供了一个强大而灵活的聊天机器人解决方案,让构建智能对话系统变得前所未有的简单。项目概述BedrockClaudeChat是一个基于AmazonBedrock平台和Anthropic公司Claude大语言模
- SpringCloud微服务实战——搭建企业级开发框架(二十四):集成行为验证码和图片验证码实现登录功能
全栈程序猿
MavenSpringCloudspringcloud微服务java
随着近几年技术的发展,人们对于系统安全性和用户体验的要求越来越高,大多数网站系统都逐渐采用行为验证码来代替图片验证码。行为验证码指的是通过用户行为来验证用户身份的验证码,如滑动拼图、识别图片中的特定物品等。 行为验证码的重要性在于可以有效地防止机器人和恶意程序对网站或应用程序进行恶意攻击、刷流量、撞库等行为,从而保障了用户和网站的安全。相较于传统的图形验证码等方式,行为验证码更难被破解,同时
- LSTM:解决梯度消失问题
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在深度学习领域,循环神经网络(RNN)是一种处理序列数据的强大工具。然而,RNN在处理长序列时面临着梯度消失的问题。为了解决这个问题,Hochreiter和Schmidhuber于1997年提出了长短期记忆(LSTM)网络。本文将深入探讨LSTM如何解决梯度消失问题。2.核心概念与联系2.1梯度消失问题在深度神经网络中,梯度消失是一个常见的问题。当网络的层数增加时,反向传播的梯度会随着
- 基于深度学习的SSD口罩识别项目完整资料版(视频教程+课件+源码+数据)
AI方案2025
深度学习人工智能
基于深度学习的SSD口罩识别项目完整资料版,包含视频教程、PPT课件和源码.01项目介绍.mp402SSD算法原理回顾.mp403数据集收集.mp404自定义数据集.mp405生成anchors.mp406展示anchors.mp407计算iou值.mp408计算target.mp409定义模型.mp410模型训练.mp411预测和总结.mp412ssd生成anchor源码编写.mp413计算of
- ERROR: Failed to build installable wheels for some pyproject.toml based projects (matplotlib)错误解决
EstrangedZ
机械臂pythonmatplotlib
ERROR:Failedtobuildinstallablewheelsforsomepyproject.tomlbasedprojects错误解决问题描述解决方案解决方案1成功的解决方案问题描述在使用pip3installroboticstoolbox-python或者pipinstallroboticstoolbox-python安装python中的机器人库时,总是会出现ERROR:ERROR
- 55、深度学习-自学之路-自己搭建深度学习框架-16、使用LSTM解决RNN梯度消失和梯度爆炸的问题,重写莎士比亚风格文章。
小宇爱
深度学习-自学之路深度学习rnn人工智能自然语言处理神经网络
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- A*路径规划算法的Python实现
我太不严肃了
算法python
A*路径规划算法的Python实现写在前面Python代码写在前面今天因为要在Python上实现机器人建图导航的仿真,写了A*算法的Python实现,过来分享一下。关于A*算法的原理网上有很多,这里就不再赘述了,直接贴代码。open_list和close_list都通过dict实现,因为dict底层是hash_map,代码整体效率还行。Python代码fromcopyimportdeepcopyi
- 解决tensorflow-addons下载问题Could not find a version that satisfies the requirement
猪猪家的小可爱
AIpython机器学习机器学习人工智能算法
由于要用到tensorflow-addons,所以需要安装对应的库。遇到的问题是:ERROR:Couldnotfindaversionthatsatisfiestherequirementtensorflow-addons(fromversions:none)ERROR:Nomatchingdistributionfoundfortensorflow-addons网上有很多说是pip源的原因,所以
- 饿了么算法工程师-AIGC岗内推
飞300
AIGC业界资讯
1、紧跟业界最新自然语言处理技术动态,深入研发并努力创新,特别是在LLM、多模态理解和LLMAgent领域。2、基于大型语言模型开展文本生成、自然语言理解以及智能对话系统的研发,提出新颖的算法/模型,并进行实际开发和应用。3、探索多模态数据的结合,包括图像、文本、语音等,以丰富智能系统的理解和交互能力。4、将自然语言处理技术与具体业务场景相结合,考虑业务的特殊性并适配业务需求。参与到具体的NLP相
- 2025年,值得关注的LLM大趋势
AI小白熊
人工智能产品经理python开发语言学习ai大模型
随着人工智能技术不断进步,大语言模型正在改变各行各业的运作方式。从代码生成到语言学习应用,GenAI已经渗透到我们日常生活的方方面面。随着像上个月OpenAI的“12天”计划或谷歌的Veo2和Imagen3等新技术的发布,我们看到了快速的创新迭代。面对这些变化,2025年LLM的大趋势值得我们关注。LLM的新兴应用:不仅仅是聊天机器人回想起最初我们用ChatGPT来生成代码或修改文本时,可能没有意
- 自然语言处理入门:从基础概念到实战项目
范范0825
自然语言处理人工智能
自然语言处理入门:从基础概念到实战项目一、引言自然语言处理(NaturalLanguageProcessing,简称NLP)是人工智能的重要分支,旨在让计算机能够理解、生成和处理人类语言。随着大数据和深度学习的发展,NLP技术在文本分类、机器翻译、问答系统、情感分析等领域得到了广泛应用。本文将从NLP的基础概念入手,逐步介绍关键技术,最终通过一个完整的实战项目帮助读者掌握如何在实际应用中使用NLP
- Python深度学习实践:使用TensorFlow构建图像分类器
Evaporator Core
Python开发经验python深度学习tensorflow
摘要随着深度学习技术的飞速发展,图像识别已成为AI领域的热点应用之一。本篇文章将引导读者使用Python和Google的TensorFlow框架,从零开始构建一个简单的图像分类器。我们将深入探讨卷积神经网络(CNN)的基本原理,实现一个能够识别MNIST手写数字的数据集模型,并通过实战代码演示整个过程,最终展示模型的训练与评估。一、环境配置与库导入确保已安装Python3.7+版本,以及Tenso
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比